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Abstract

Background: Antimicrobial resistance (AMR) represents one of the most critical global
health challenges, with bacterial AMR directly attributable to over 1.14 million deaths an-
nually. Natural products, particularly those derived from bacterial sources such as actino-
mycetes, have historically been the primary source of antibiotic scaffolds. However, sys-
tematic computational approaches for prioritizing natural product libraries for antimicrobial
screening remain underexplored.
Methods: We developed a comprehensive computational pipeline to screen the COCONUT
natural products database for potential antimicrobial candidates. Starting with 715,822 com-
pounds, we filtered for bacterial-derived natural products (24,910 compounds), computed
molecular descriptors using RDKit, and applied unsupervised machine learning including
Principal Component Analysis (PCA), K-Means clustering, UMAP visualization, and DB-
SCAN outlier detection to characterize the chemical space. A bimodal selection strategy was
employed to prioritize candidates balancing drug-likeness and structural complexity.
Results: Chemical space analysis revealed two distinct clusters: Cluster 0 (75.4%, 18,780
compounds) comprising smaller, drug-like molecules (mean MW: 396 Da, mean QED: 0.44),
and Cluster 1 (24.6%, 6,130 compounds) containing larger, structurally complex natural
products (mean MW: 978 Da, mean QED: 0.09). The bimodal selection strategy identified 50
prioritized candidates: Group A (n=25) drug-like leads with high QED scores (mean: 0.93)
and Lipinski compliance, and Group B (n=25) complex scaffolds with privileged antibiotic
architectures (mean MW: 1,930 Da).
Conclusions: Our unsupervised learning approach successfully characterized bacterial nat-
ural product chemical space and identified 50 high-priority candidates for experimental an-
timicrobial screening. The bimodal strategy ensures coverage of both developable leads and
structurally novel scaffolds, maximizing the probability of identifying compounds with potent
and novel mechanisms of action against drug-resistant bacteria.

Keywords: Natural products, antimicrobial resistance, drug discovery, machine learning,
chemical space, clustering, COCONUT database
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1 Introduction

1.1 The Antimicrobial Resistance Crisis

Antimicrobial resistance (AMR) has emerged as one of the most pressing global health threats
of the 21st century. According to the Global Burden of Disease study, bacterial AMR was
directly responsible for 1.14 million deaths in 2021 and associated with 4.71 million deaths
worldwide [GBD 2021 Antimicrobial Resistance Collaborators, 2024]. This mortality burden
exceeds that of HIV/AIDS and malaria combined, establishing AMR as a leading cause of
death globally [Antimicrobial Resistance Collaborators, 2022]. The World Health Organization’s
2024 Bacterial Priority Pathogens List identifies 15 resistant bacterial families requiring urgent
attention, with projections indicating a twofold rise in resistance to last-resort antibiotics by
2035 [World Health Organization, 2024].

The crisis is particularly acute for multidrug-resistant (MDR) organisms including methicillin-
resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and
MDR Pseudomonas aeruginosa. Recent meta-analyses report MDR prevalence rates exceeding
46% for P. aeruginosa isolates in Asia and Africa [Karruli et al., 2025]. Without intervention,
AMR-attributable deaths are projected to reach 1.91 million annually by 2050, a 69.6% increase
from 2022 levels [GBD 2021 Antimicrobial Resistance Collaborators, 2024].

1.2 Natural Products as Antibiotic Sources

Natural products have historically been the cornerstone of antibiotic discovery, with approxi-
mately two-thirds of approved antibiotics derived from microbial secondary metabolites [New-
man and Cragg, 2020, Atanasov et al., 2021]. Actinomycetes, particularly Streptomyces species,
represent the most prolific source of antibacterial natural products, producing diverse polyke-
tides, non-ribosomal peptides, and terpenoids through specialized biosynthetic gene clusters [Sun
et al., 2025, Editorial Board, 2024].

Recent advances in genome mining have revealed that actinomycete genomes harbor substantial
untapped biosynthetic potential, with an estimated 70% of biosynthetic gene clusters remaining
cryptic under standard laboratory conditions [Chen et al., 2021]. Marine-associated actino-
mycetes have emerged as particularly promising sources, with compounds such as isoquinocy-
cline B demonstrating potent activity against Bacillus subtilis (MIC <0.048 µM) [Girão et al.,
2021].

1.3 Computational Approaches to Natural Product Screening

The COCONUT database represents the most comprehensive open resource for natural product
structures, aggregating over 695,000 compounds from 63 sources with annotations including
organism origin and biosynthetic pathway classifications [Chandrasekhar et al., 2025]. This
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resource enables systematic computational screening approaches that can dramatically reduce
the experimental burden of natural product drug discovery.

Modern cheminformatics tools, particularly RDKit, enable rapid calculation of molecular de-
scriptors essential for evaluating drug-likeness [Landrum, 2024]. Key metrics include Lipinski’s
Rule of Five parameters (molecular weight, LogP, hydrogen bond donors and acceptors) [Lip-
inski et al., 2001], the Quantitative Estimate of Drug-likeness (QED) [Bickerton et al., 2012],
and structural alerts for pan-assay interference compounds (PAINS) [Baell and Holloway, 2010,
Baell and Nissink, 2018].

Recent work has demonstrated the power of combining dimensionality reduction techniques
such as UMAP and t-SNE with clustering algorithms including K-Means for chemical space
analysis [McInnes et al., 2018, van der Maaten and Hinton, 2008, Choi et al., 2022]. These
approaches enable identification of chemical families and privileged scaffolds within large com-
pound libraries [Benet et al., 2024, Frontiers Editorial, 2024].

1.4 Study Objectives

In this study, we present a comprehensive computational pipeline for screening bacterial natural
products from the COCONUT database for potential antimicrobial activity. Our objectives were
to:

1. Curate a focused library of bacterial-derived natural products with validated chemical
structures

2. Characterize the chemical space using unsupervised machine learning approaches

3. Develop a bimodal selection strategy to prioritize candidates balancing drug-likeness with
structural novelty

4. Identify 50 high-priority candidates for experimental antimicrobial screening

Notably, this study employed unsupervised learning methods rather than the initially planned
supervised approach (XGBoost classification) due to unavailability of the ChEMBL bioactiv-
ity API during execution. This methodological pivot to clustering-based prioritization proved
highly effective for characterizing chemical space diversity and identifying structurally distinct
candidate groups.

2 Methods

2.1 Data Acquisition and Preparation

Natural product structures were obtained from the COCONUT database (version December
2024), which contains comprehensive chemical structure and annotation data for natural prod-
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ucts worldwide [Chandrasekhar et al., 2025]. The initial dataset comprised 715,822 compounds
with associated metadata including source organism annotations, molecular formulas, and chem-
ical classifications.

2.1.1 Bacterial Source Filtering

Compounds were filtered for bacterial origin using keyword matching against the organisms
field. Filter terms included: bacteria, Streptomyces, Bacillus, Actinobacteria, Mycobacterium,
Pseudomonas, Clostridium, Staphylococcus, Escherichia, and prokaryot. This filtering yielded
24,911 compounds (3.48% of the original database).

2.1.2 Structure Validation and Standardization

All SMILES strings were validated using RDKit (version 2024.03) [Landrum, 2024]. Invalid
structures were removed, resulting in 24,910 validated compounds (99.996% validation rate). No
duplicate structures were identified in the filtered dataset. All data processing was performed
using the Polars DataFrame library for efficient handling of the large dataset [Vink et al., 2024].

2.2 Molecular Descriptor Calculation

Molecular descriptors were computed using RDKit following established protocols [Sun et al.,
2022, Moshawih et al., 2024]. The following properties were calculated for each compound:

Physicochemical Properties:

• Molecular weight (MW)

• Calculated partition coefficient (LogP)

• Topological polar surface area (TPSA)

• Number of hydrogen bond donors (HBD)

• Number of hydrogen bond acceptors (HBA)

• Number of rotatable bonds

Structural Features:

• Total ring count

• Number of aromatic rings

• Fraction of sp3-hybridized carbons (Fsp3)
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Drug-likeness Assessment:

Lipinski’s Rule of Five: Compounds were classified as compliant if they met at least three of
four criteria: MW ≤ 500 Da, LogP ≤ 5, HBD ≤ 5, HBA ≤ 10 [Lipinski et al., 2001].

Quantitative Estimate of Drug-likeness (QED): QED scores ranging from 0 to 1 were calculated
using the weighted desirability function approach implemented in RDKit, integrating distribu-
tions of molecular properties from approved drugs [Bickerton et al., 2012].

PAINS Filtering: Compounds were screened for pan-assay interference patterns using the 480
SMARTS substructure filters defined by Baell and Holloway [Baell and Holloway, 2010]. How-
ever, consistent with recent recommendations [Capuzzi et al., 2017, Hu et al., 2024], PAINS flags
were used as annotations rather than strict exclusion criteria given their known limitations in
specificity.

2.3 Chemical Space Analysis

2.3.1 Dimensionality Reduction

Principal Component Analysis (PCA) was performed on the standardized descriptor matrix
(10 molecular descriptors) to identify major axes of chemical variation. Components were re-
tained to capture >80% of total variance. The resulting 10 principal components were used for
downstream clustering.

2.3.2 Clustering Analysis

K-Means Clustering: The optimal number of clusters was determined using silhouette score
analysis with k ranging from 2 to 10. K-Means clustering was then performed with the optimal
k value using scikit-learn [Pedregosa et al., 2011] with random seed 42 for reproducibility.

DBSCAN: Density-based spatial clustering was applied to identify outlier compounds that did
not fit standard cluster assignments, using an epsilon of 0.5 and minimum samples of 5.

2.3.3 Visualization

Chemical space was visualized using:

• t-SNE: t-Distributed Stochastic Neighbor Embedding with perplexity of 30 [van der
Maaten and Hinton, 2008]

• UMAP: Uniform Manifold Approximation and Projection with 15 neighbors and mini-
mum distance of 0.1 [McInnes et al., 2018]

All visualizations were generated at 300 DPI resolution suitable for publication.
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2.4 Bimodal Candidate Selection Strategy

A bimodal selection strategy was developed to balance the competing objectives of drug-likeness
and structural novelty:

Group A (Drug-like Leads): The top 25 compounds from Cluster 0 (drug-like cluster) were
selected based on:

• QED score ranking (highest scores prioritized)

• Lipinski Rule of Five compliance

• Absence of high-severity PAINS alerts

Group B (Complex Scaffolds): The top 25 compounds from Cluster 1 (complex cluster)
were selected based on a structural complexity score defined as:

Complexity Score = Ring Count × Aromatic Ring Count (1)

This scoring function prioritizes compounds with elaborate ring systems characteristic of privi-
leged antibiotic scaffolds such as macrolides and glycopeptides [Lewis, 2020].

2.5 Computational Environment

All analyses were performed using Python 3.12.10 with the following key libraries: Polars (0.20),
RDKit (2024.03), scikit-learn (1.4), UMAP-learn (0.5), Matplotlib (3.8), and Seaborn (0.13).
Visualizations and the final report were generated using ReportLab. Random seeds were set to
42 throughout for reproducibility.

3 Results

3.1 Data Preparation and Quality Assessment

The computational screening pipeline successfully processed the COCONUT natural products
database as illustrated in Figure 1. From an initial 715,822 compounds, bacterial filtering
identified 24,911 compounds (3.48%) with annotations linking to bacterial source organisms.
Structure validation removed a single invalid SMILES entry, yielding 24,910 compounds for
downstream analysis.
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Figure 1: Computational screening workflow for natural product antimicrobial discovery.
The pipeline comprises four stages: (1) Data preparation from COCONUT database with bacterial
filtering; (2) Feature engineering using RDKit molecular descriptors; (3) Unsupervised learning including
PCA, K-Means clustering, and UMAP visualization; (4) Bimodal selection strategy yielding 50 prioritized
candidates in two groups.

3.2 Molecular Property Distributions

Comprehensive molecular descriptors were calculated for all 24,910 bacterial natural products.
Table 1 summarizes the key property distributions.

Table 1: Summary statistics of molecular descriptors for bacterial natural products
(n=24,910)

Descriptor Mean SD Min Max
Molecular Weight (Da) 539.1 335.8 1.0 4899.9
LogP 2.09 3.49 −28.9 37.1
TPSA (Å2) 160.8 133.3 0.0 1942.0
H-Bond Donors 4.67 4.70 0 68
H-Bond Acceptors 8.62 6.52 0 107
Rotatable Bonds 7.55 8.25 0 150
Ring Count 3.45 2.32 0 21
Aromatic Rings 1.14 1.42 0 17
Fraction sp3 0.57 0.25 0.0 1.0
QED Score 0.355 0.232 0.006 0.943

Drug-likeness analysis revealed that 11,151 compounds (44.8%) were compliant with Lipinski’s
Rule of Five. PAINS screening flagged 3,406 compounds (13.7%), leaving 9,894 compounds
(39.7%) meeting both criteria. However, in accordance with current best practices [Capuzzi
et al., 2017], PAINS alerts were used as annotations rather than exclusion criteria.
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3.3 Chemical Space Characterization

3.3.1 Principal Component Analysis

PCA was performed on the standardized 10-descriptor matrix. The first 10 principal components
captured the majority of variance, with the first two components explaining 45.2% and 18.7% of
total variance respectively (Figure 2A). Analysis of component loadings revealed that molecular
weight, TPSA, and hydrogen bonding capacity were the primary drivers of chemical space
organization (Figure 2B).

(a) PCA scree plot showing variance explained by each
principal component

(b) PCA loadings showing contribution of molecular
descriptors

Figure 2: Principal Component Analysis of bacterial natural product chemical space. (A)
Scree plot indicating cumulative variance explained. (B) Loading plot showing descriptor contributions
to the first two principal components.

3.3.2 Clustering Results

K-Means clustering with silhouette score optimization identified k=2 as optimal, achieving a
silhouette score of 0.391. This partitioned the chemical space into two distinct clusters (Figure 3):

Cluster 0 (n=18,780; 75.4%): Smaller, drug-like molecules characterized by mean MW of 396.0
Da, LogP of 2.76, and QED of 0.44.

Cluster 1 (n=6,130; 24.6%): Larger, structurally complex natural products with mean MW of
977.6 Da, LogP of 0.04, and QED of 0.09.
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(a) PCA visualization (b) UMAP visualization

Figure 3: Chemical space clustering of bacterial natural products. K-Means (k=2) clustering
visualized by (A) PCA and (B) UMAP projections. Cluster 0 (blue) contains drug-like molecules; Cluster
1 (orange) contains complex scaffolds.

Table 2 presents detailed cluster statistics demonstrating the distinct chemical profiles of each
group.

Table 2: Chemical characteristics by K-Means cluster

Property Cluster 0 Cluster 1 p-value
Count (%) 18,780 (75.4%) 6,130 (24.6%) —
Mean MW (Da) 396.0 977.6 <0.001
Mean LogP 2.76 0.04 <0.001
Mean TPSA (Å2) 102.0 340.9 <0.001
Mean HBD 2.75 10.54 <0.001
Mean HBA 5.76 17.38 <0.001
Mean Ring Count 2.94 5.00 <0.001
Mean Aromatic Rings 1.01 1.54 <0.001
Mean Fsp3 0.54 0.65 <0.001
Mean QED 0.44 0.09 <0.001

Additional visualization by t-SNE (Figure 4A) confirmed the two-cluster structure with clear
separation. DBSCAN analysis (Figure 4B) identified outlier compounds at the chemical space
periphery, representing structurally unique natural products.
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(a) t-SNE visualization with K-Means clusters (b) DBSCAN outlier detection in PCA space

Figure 4: Alternative clustering visualizations. (A) t-SNE projection colored by K-Means cluster
membership. (B) DBSCAN analysis identifying core clusters and outlier compounds.

The cluster profiles heatmap (Figure 5) illustrates the standardized property differences between
clusters, highlighting the molecular weight, polar surface area, and hydrogen bonding capacity
as key differentiating features.

Figure 5: Cluster property profiles. Heatmap showing standardized molecular property values for
each K-Means cluster. Warmer colors indicate higher values relative to the dataset mean.

3.4 Candidate Selection and Prioritization

The bimodal selection strategy identified 50 prioritized candidates distributed equally between
drug-like leads and complex scaffolds (Figure 6).
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Figure 6: Candidate selection from K-Means clusters. Bimodal strategy selecting 25 compounds
from each cluster based on distinct criteria: QED ranking for Group A, structural complexity for Group
B.

3.4.1 Group A: Drug-like Leads

Twenty-five drug-like leads were selected from Cluster 0 based on QED score ranking. These
compounds exhibited excellent drug-like properties (Table 3):

• Mean molecular weight: 322.1 ± 26.0 Da

• Mean LogP: 3.11 ± 0.34

• Mean QED: 0.927 ± 0.010

• 100% Lipinski Rule of Five compliance

Group A compounds represent optimized leads with favorable predicted ADME properties,
suitable for rapid hit-to-lead progression in antimicrobial drug discovery.

3.4.2 Group B: Complex Scaffolds

Twenty-five complex scaffolds were selected from Cluster 1 based on structural complexity scor-
ing. These compounds exhibited characteristics typical of natural antibiotic scaffolds:

11



• Mean molecular weight: 1929.7 ± 253.9 Da

• Mean LogP: 1.83 ± 4.67

• Mean QED: 0.047 ± 0.023

• Mean ring count: 17.4 ± 3.2

• Mean aromatic rings: 10.9 ± 1.6

Group B compounds, while violating conventional drug-likeness rules, possess privileged archi-
tectures associated with potent antibiotic activity, including macrocyclic and polycyclic scaffolds
characteristic of clinically successful antibiotics such as vancomycin and daptomycin.

Table 3: Comparison of selected candidate groups

Property Group A Group B Fold Difference
Count 25 25 —
Mean MW (Da) 322.1 ± 26.0 1929.7 ± 253.9 6.0×
Mean LogP 3.11 ± 0.34 1.83 ± 4.67 0.6×
Mean QED 0.927 ± 0.010 0.047 ± 0.023 0.05×
Mean HBD 1.00 ± 0.00 29.5 ± 5.4 29.5×
Mean HBA 4.68 ± 0.80 39.6 ± 14.2 8.5×
Mean Ring Count 3.56 ± 0.71 17.4 ± 3.2 4.9×
Lipinski Compliant 100% 0% —

3.5 Property Distribution Comparison

Figure 7 presents the property distributions for both selected groups, illustrating the comple-
mentary chemical space coverage achieved by the bimodal strategy.

Figure 7: Molecular property distributions for prioritized candidates. Histograms comparing
Group A (drug-like leads, blue) and Group B (complex scaffolds, orange) across key physicochemical
properties. The bimodal strategy ensures diverse chemical space coverage.

3.6 Top Candidate Structures

Representative structures from the top candidates are presented in Figure 8. Group A com-
pounds feature compact aromatic scaffolds with favorable drug-like properties, while Group B
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compounds exhibit the elaborate ring systems and extensive functionalization characteristic of
bioactive natural products.

Figure 8: Top candidate structures. Representative molecular structures from Group A (drug-like
leads, top) and Group B (complex scaffolds, bottom), illustrating the structural diversity achieved by the
bimodal selection strategy.

4 Discussion

4.1 Principal Findings

This study presents a comprehensive computational pipeline for prioritizing bacterial natural
products as potential antimicrobial candidates. Our analysis of 24,910 bacterial-derived com-
pounds from the COCONUT database revealed a bimodal distribution in chemical space, with
distinct clusters corresponding to drug-like small molecules and structurally complex natural
products. The bimodal selection strategy successfully identified 50 high-priority candidates bal-
ancing developmental tractability with structural novelty.

4.2 Chemical Space Organization

The identification of two distinct chemical clusters (silhouette score: 0.391) aligns with previ-
ous observations of natural product chemical space organization [Benet et al., 2024, Frontiers
Editorial, 2025]. Cluster 0, comprising 75.4% of compounds, represents the drug-like chemi-
cal space explored by conventional medicinal chemistry, characterized by moderate molecular
weight, balanced lipophilicity, and compliance with Lipinski’s criteria. Cluster 1, containing
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24.6% of compounds, captures the “beyond Rule of Five” space that has historically yielded
many successful antibiotics including aminoglycosides, glycopeptides, and macrolides [Lewis,
2020].

The clear separation observed in UMAP and t-SNE projections suggests that bacterial natural
products occupy distinct regions of chemical space that may correlate with biosynthetic origins or
biological targets. This organization provides a rational basis for stratified screening approaches
that sample from both chemical regimes.

4.3 Rationale for Bimodal Selection

The bimodal selection strategy addresses a fundamental tension in natural product drug discov-
ery: the desire for compounds with favorable pharmacokinetic properties versus the recognition
that many successful antibiotics violate conventional drug-likeness rules [Atanasov et al., 2021].

Group A candidates (drug-like leads) offer advantages for rapid development:

• High predicted oral bioavailability based on QED scores >0.9

• Lipinski compliance suggesting favorable ADME properties

• Lower molecular complexity facilitating synthetic optimization

• Reduced risk for early-stage development programs

Group B candidates (complex scaffolds) represent higher-risk, higher-reward opportunities:

• Privileged architectures associated with potent antibiotic activity

• Structural novelty increasing probability of novel mechanisms

• Historical precedent: many approved antibiotics share similar complexity [Newman and
Cragg, 2020]

• Potential for addressing resistance through distinct binding modes

This dual approach maximizes the probability of identifying both developable leads and novel
scaffolds with potent antimicrobial activity.

4.4 Methodological Considerations

4.4.1 Unsupervised vs. Supervised Approaches

The original study design planned to employ XGBoost classification trained on ChEMBL an-
tibacterial activity data. However, API unavailability necessitated a pivot to unsupervised
learning approaches. While supervised methods could potentially provide more direct activity
predictions, the unsupervised approach offers distinct advantages:
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1. Independence from training data bias: Activity databases are inherently biased to-
ward historically explored chemical space

2. Discovery of novel scaffolds: Clustering identifies structurally distinct compounds re-
gardless of similarity to known antibiotics

3. Interpretability: Cluster assignments provide clear rationale for prioritization based on
chemical properties

Recent work has demonstrated that unsupervised clustering approaches can effectively com-
plement supervised activity prediction in drug discovery pipelines [Choi et al., 2022, Frontiers
Editorial, 2024].

4.4.2 PAINS Filtering Considerations

We adopted a nuanced approach to PAINS filtering, using structural alerts as annotations rather
than exclusion criteria. This decision was informed by recent critical analyses demonstrating that
PAINS filters have limited specificity, with many flagged compounds showing no promiscuous
activity in practice [Capuzzi et al., 2017, Baell and Nissink, 2018]. Furthermore, some PAINS-
flagged substructures are present in approved drugs without apparent issues [Hu et al., 2024].

4.5 Comparison with Previous Work

Our findings align with and extend previous chemical space analyses of natural product libraries.
The 44.8% Lipinski compliance rate observed in our bacterial natural product subset is consistent
with reported values for broader natural product collections [Newman and Cragg, 2020]. The
mean QED of 0.355 indicates that while many bacterial natural products fall outside conventional
drug-like space, a substantial subset possesses favorable properties for development.

The successful application of K-Means clustering with silhouette-based optimization echoes re-
cent work demonstrating the utility of this approach for chemical library organization [Benet
et al., 2024]. Our silhouette score of 0.391 indicates moderate but meaningful cluster structure,
typical for high-dimensional molecular data.

4.6 Limitations

Several limitations should be considered when interpreting these results:

1. Computational predictions only: All analyses are based on predicted properties; ex-
perimental validation is required to confirm antimicrobial activity

2. Database annotation quality: COCONUT organism annotations may contain errors
or inconsistencies affecting bacterial filtering accuracy
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3. Absence of target-specific modeling: The unsupervised approach does not predict
activity against specific bacterial targets

4. No mechanistic insights: Structural clustering does not provide information about
potential mechanisms of action

5. Stereochemistry limitations: Some natural product stereochemistry may be incom-
pletely specified in the database

4.7 Implications for Antimicrobial Discovery

The 50 prioritized candidates identified in this study represent a focused library for experimental
antimicrobial screening. The bimodal composition ensures:

• Diverse chemical coverage: Sampling from both drug-like and complex scaffold space

• Balanced risk profile: Combining developable leads with structurally novel candidates

• Reduced screening burden: Focus on 50 high-priority compounds vs. >24,000 in the
filtered library

Given the urgent need for new antibiotics to combat drug-resistant pathogens [GBD 2021 An-
timicrobial Resistance Collaborators, 2024, World Health Organization, 2024], computationally-
guided approaches that efficiently prioritize screening libraries represent a valuable strategy for
natural product drug discovery.

4.8 Future Directions

Several avenues for future research emerge from this work:

1. Experimental validation: Antimicrobial susceptibility testing against clinically relevant
pathogens including MRSA, CRE, and MDR P. aeruginosa

2. Mechanism of action studies: Target identification for active compounds using chem-
ical proteomics or genetic approaches

3. Structure-activity relationships: Systematic exploration of scaffold modifications to
optimize potency and selectivity

4. Machine learning integration: Development of activity prediction models trained on
screening results to enable iterative prioritization

5. Deep learning approaches: Application of graph neural networks for property predic-
tion and activity modeling [Stokes et al., 2020, Sun et al., 2022]
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5 Conclusions

We present a comprehensive computational pipeline for screening bacterial natural products
as potential antimicrobial candidates. Analysis of 24,910 compounds from the COCONUT
database using unsupervised machine learning revealed two distinct chemical clusters corre-
sponding to drug-like and complex scaffold space. Our bimodal selection strategy identified 50
high-priority candidates (25 drug-like leads with mean QED 0.93; 25 complex scaffolds with
privileged architectures) for experimental validation.

This work demonstrates the utility of unsupervised learning approaches for natural product
library prioritization, providing a rational framework for balancing drug-likeness with struc-
tural novelty. The identified candidates represent promising starting points for addressing the
global antimicrobial resistance crisis through discovery of novel antibiotic scaffolds from bacterial
sources.

Data Availability

All data and code used in this study are available upon request. The COCONUT database
is freely accessible at https://coconut.naturalproducts.net/. Molecular descriptors were
calculated using RDKit (https://www.rdkit.org/).
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