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Abstract

The Variational Quantum Eigensolver (VQE) is a leading hybrid quantum-classical algorithm
for computing molecular ground state energies on noisy intermediate-scale quantum (NISQ)
devices. This study presents a comprehensive benchmarking analysis of VQE performance
across multiple molecular systems (Hsy, LiH, BeHy, HyO), ansatz types (Unitary Coupled
Cluster Singles and Doubles, Hardware-Efficient, and Adaptive), and classical optimization
methods (L-BFGS-B, COBYLA, SPSA). We demonstrate that uccsD ansatz combined with
L-BFGS-B optimization achieves chemical accuracy (< 1.6 mHa) across all tested systems,
with perfect agreement with Full Configuration Interaction (rc1) for Hy and sub-0.2 mHa
error for LiH. Potential energy surface scans reveal excellent dissociation curve fidelity for
both molecules. Resource scaling analysis shows manageable qubit requirements (4-12 qubits)
and parameter counts (3-92 parameters) for molecules up to 10 electrons using active space
reduction. Critically, we find that VQE maintains chemical accuracy under depolarizing
noise only up to rates of approximately 5 x 10, with performance degrading beyond 1073,
These findings establish practical operational guidelines for near-term quantum chemistry
applications and identify noise mitigation as a critical requirement for scaling VQE to larger
molecular systems.

Keywords: Variational Quantum Eigensolver, quantum chemistry, NISQ algorithms, ansatz
optimization, noise robustness, chemical accuracy

1 Introduction

Quantum computing holds transformative potential for computational chemistry, offering the
prospect of simulating molecular systems with polynomial resource scaling where classical methods
require exponential resources. The fundamental challenge in quantum chemistry—solving the
electronic Schrodinger equation to determine molecular ground state energies—has motivated
decades of algorithm development, from Hartree-Fock (HF) approximations to sophisticated
post-HF methods such as Coupled Cluster and Configuration Interaction (Bartlett and Musiat,
2007). Despite significant advances, the exact treatment of electron correlation in strongly
correlated systems remains computationally intractable on classical computers for molecules
beyond approximately 20-30 orbitals (Booth et al., 2009).

The Variational Quantum Eigensolver (VQE), introduced by Peruzzo et al. (2014), has
emerged as the flagship algorithm for quantum chemistry on noisy intermediate-scale quantum

(N1sQ) devices (Preskill, 2018). Unlike fault-tolerant quantum phase estimation algorithms that
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require deep circuits and error correction, VQE employs a hybrid quantum-classical approach
that delegates state preparation to quantum hardware while optimizing variational parameters
on classical computers. This architectural choice makes VQE particularly well-suited to the
constraints of current quantum devices, which suffer from limited coherence times, restricted
qubit connectivity, and substantial gate error rates (Cao et al., 2019).

The success of VQE depends critically on three interrelated design choices: the parameterized
quantum circuit (ansatz) that prepares trial wavefunctions, the classical optimizer that minimizes
the energy expectation value, and the algorithm’s robustness to hardware noise. The ansatz
must be sufficiently expressive to capture electron correlation while remaining shallow enough
for reliable execution on N1SQ hardware. The optimizer must navigate a complex, potentially
non-convex energy landscape efficiently. And the entire procedure must tolerate the errors
inherent in current quantum gates (Cerezo et al., 2021).

Several ansatz families have been proposed for VQE applications in chemistry. The Unitary
Coupled Cluster Singles and Doubles (UcCsD) ansatz adapts the highly successful classical
coupled cluster theory to the quantum setting (Taube and Bartlett, 2006; Romero et al., 2018).
By construction, UcCsD encodes chemically motivated excitation operators that systematically
improve upon the HF reference state. However, UCCSD circuits scale steeply with system size,
with gate counts growing as O(N%) where N is the number of orbitals (Shen et al., 2017).
Hardware-efficient ansétze (HEA) offer an alternative, employing generic parameterized gates
arranged to respect device connectivity constraints (Kandala et al., 2017). While HEA circuits
are shallow and hardware-friendly, they lack chemical structure and are known to suffer from
barren plateaus—exponentially vanishing gradients that preclude effective optimization in high-
dimensional parameter spaces (McClean et al., 2018). Adaptive ansétze represent a middle
ground, iteratively constructing circuits by adding operators that maximize the energy gradient
(Grimsley et al., 2019).

The choice of classical optimizer is equally consequential. Gradient-based methods such as L-
BFGS-B can exploit the differentiability of quantum circuits (via parameter-shift rules) for rapid
convergence, but require careful implementation to ensure proper gradient flow. Gradient-free
methods such as COBYLA and SPSA avoid gradient computation but typically require more
function evaluations and may struggle in high-dimensional spaces (Tilly et al., 2022).

This study systematically evaluates VQE performance across these design dimensions using a
benchmark suite of small molecules (Hz, LiH, BeHy, H2O) that span 2-10 electrons and 4-12
qubits. Our specific objectives include: (1) quantifying VQE error versus FCI reference for each
ansatz-optimizer combination; (2) comparing UccsD, hardware-efficient, and adaptive ansétze in
terms of accuracy, convergence, and resource requirements; (3) validating VQE across potential
energy surfaces to assess performance in chemically challenging bond-dissociation regimes; (4)
characterizing resource scaling (qubits, parameters, circuit depth) with molecular complexity;
and (5) determining the noise tolerance threshold for maintaining chemical accuracy under
depolarizing error models.

Understanding these practical limitations and capabilities is critical for bridging the gap
between theoretical quantum advantage and real-world applications. The results presented

here provide quantitative guidance for selecting appropriate ansétze, identifying noise tolerance
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requirements, and establishing computational resource budgets for near-term quantum chemistry

applications.

2 Methods

2.1 Molecular Systems and Hamiltonians

We selected a benchmark suite of four molecules spanning increasing complexity from 2 to 10
electrons, as summarized in Table 1. All calculations employed the STO-3G minimal basis set to
ensure manageable qubit counts while capturing essential electronic structure features (Helgaker
et al., 1997).

Table 1: Molecular benchmark systems and computational parameters.

Molecule Formula Electrons Qubits Active Space Bond Length (A)
Hydrogen H, 2 4 Full 0.74
Lithium Hydride LiH 4 10 2e~ /5 orb 1.60
Beryllium Hydride BeHy 6 8 4e~ /6 orb 1.33
Water H5O 10 12 8¢~ /6 orb 0.96

Molecular Hamiltonians were constructed following the standard pipeline for quantum chem-
istry simulation. First, Hartree-Fock calculations using PySCF provided reference energies and
molecular orbital coefficients. Second, one- and two-electron integrals were computed in the

molecular orbital basis and used to construct the second-quantized electronic Hamiltonian:

N e 1 TR
H = Z hpqa;f,aq + 3 Z hpqma;;a:;aras (1)
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where &;, and a, are fermionic creation and annihilation operators, and h,, and hpqs are one-
and two-electron integrals respectively.

The fermionic Hamiltonian was then mapped to qubit operators using the Jordan-Wigner
transformation (Jordan and Wigner, 1928), which encodes fermionic occupation numbers in
computational basis states:

T ST 5
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where X , Y, and Z are Pauli operators.

For LiH, BeHs, and H2O, active space reduction was applied by freezing core orbitals to
manage qubit requirements while preserving chemically relevant valence correlation effects. This
approximation introduces systematic error of order 0.1-1 mHa but enables practical simulation
on classical hardware (Romero et al., 2018).

Reference ground state energies were computed via Full Configuration Interaction (FCI) exact
diagonalization for benchmarking VQE accuracy. Chemical accuracy is defined as error < 1.6 mHa

(=~ 1 kcal/mol), the threshold below which energy differences become chemically meaningful.
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2.2 Variational Quantum Eigensolver

The VQE algorithm seeks to minimize the energy expectation value

E(6) = (4(0)|H|%(9)) (3)

where [1(0)) = U(0)|vy) is a parameterized trial state prepared by applying a variational circuit
U(0) to an initial reference state |¢)p) (typically the HF state). The workflow, illustrated in

Figure 1, iterates between quantum state preparation and classical parameter optimization until

convergence.
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Figure 1: Variational Quantum Eigensolver workflow. The hybrid algorithm iterates
between quantum state preparation (right) and classical optimization (left). The molecular
Hamiltonian is constructed from the input geometry, mapped to qubit operators, and used to
evaluate the energy expectation value on the quantum device. The classical optimizer updates
variational parameters 8 until convergence to the ground state energy is achieved within the
chemical accuracy threshold of 1.6 mHa.

2.3 Ansatz Types

Three parameterized quantum circuit families were evaluated:
Unitary Coupled Cluster Singles and Doubles (uUccsD). The uccsD ansatz is the

quantum analog of classical coupled cluster theory:
[(8)) = 7O~ O)|HF) (4)

where 7(0) = > 0T + > i H%TZ contains single and double excitation operators parameterized

by 8. The number of parameters scales as Ngingles = Noce X Nvirt and Noubles = (”3“) (""2“),
where nocc and nyi¢ are the numbers of occupied and virtual orbitals. UCCSD is chemically
motivated and systematically improvable but produces deep circuits.

Hardware-Efficient Ansatz (HEA). Layered parameterized circuits optimized for hardware
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connectivity:

L
ENT (5)
=1

ue) =11 HRi(eiZ)

where R; are single-qubit rotations (Rx, Ry, Rz) and ENT represents entangling gates (CNOT).

Each layer contributes 3n, parameters. HEA offers shallow circuits but lacks chemical structure.

Adaptive Ansatz. Iteratively constructed circuits that add operators maximizing the
energy gradient. This approach typically achieves parameter counts of approximately 5n, for
the molecules studied, offering a balance between UCCSD’s chemical accuracy and HEA’s circuit

efficiency.

2.4 Classical Optimization

Three optimization methods were compared:

L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno with bounds) is a quasi-
Newton method requiring gradient information (Nocedal, 1980). Gradients were computed
analytically using the parameter-shift rule, with parameters converted to PennyLane autograd
arrays with requires_grad=True to enable automatic differentiation. Settings: ftol=1e-6,
maxiter=100.

COBYLA (Constrained Optimization BY Linear Approximation) is a gradient-free method
using linear approximations (Powell, 1994). Settings: maxiter=500, tol=1e-6.

SPSA (Simultaneous Perturbation Stochastic Approximation) estimates gradients stochasti-

cally using finite differences (Spall, 1992). Settings: adaptive step size, 400 iterations.

2.5 Noise Modeling

To assess N1SQ hardware compatibility, depolarizing noise was applied to simulate gate errors:
p—>(1—p)p+§(f<pf(+ffp?+2p2> (6)

where p is the per-gate error rate. Simulations used PennyLane’s default.mixed device for
density matrix evolution. Noise rates tested spanned 10~ to 10!, covering the range from

near-ideal to highly noisy conditions.

2.6 Computational Environment

All simulations were performed using PennyLane (v0.37+) with the NumPy interface for quantum
circuit simulation, PySCF (v2.6+) for classical chemistry calculations, and SciPy for classical
optimization. Calculations were executed on standard CPU architecture using exact statevector

simulation for noiseless runs and density matrix simulation for noise studies.
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3 Results

3.1 Small Molecule Benchmarks: H, and LiH

We first established baseline VQE performance on the prototypical diatomic molecules Hy (2
electrons, 4 qubits) and LiH (4 electrons, 10 qubits with active space reduction). Table 2

summarizes the results for UCCSD ansatz across optimizers.

Table 2: VQE performance for Ho and LiH using UCCSD ansatz.

Molecule Optimizer FCI (Ha) VQE (Ha) Error (mHa) Iterations Time (s) Accuracy
Ho L-BFGS-B —-1.1373 —1.1373 0.00 4-6 0.1 v
Hy COBYLA —1.1373 —1.1373 0.00 56 0.3 v
LiH L-BFGS-B —7.8821 —7.8819 0.16 8 2.8 v
LiH COBYLA —7.8821 —7.8798 2.34 184 64.2 X

For Hy, both L-BFGS-B and COBYLA achieved perfect agreement with FCI (error <
0.0001 mHa). The gradient-based L-BFGS-B converged in 4-6 iterations, while COBYLA
required 56 iterations. The 3-parameter UCCSD circuit for Ho represents the simplest non-trivial
quantum chemistry problem.

For LiH, the performance gap between optimizers became pronounced. L-BFGS-B achieved
chemical accuracy (0.16 mHa error) in only 8 iterations, while COBYLA failed to reach chemical
accuracy (2.34 mHa error) despite 184 iterations and 23x longer runtime. This result underscores
that gradient-based optimization with analytic gradients is essential for chemical accuracy and
computational efficiency in VQE.

The success of L-BFGS-B depended on a critical implementation detail: parameters must be
explicitly marked as trainable (requires_grad=True) for PennyLane’s automatic differentiation

to function correctly. Initial runs without this specification produced single-iteration “convergence’

at the HF energy, as the optimizer received empty gradient vectors.

3.2 Potential Energy Surface Analysis

To validate VQE fidelity in chemically challenging regimes, we performed bond dissociation scans
for Hy (0.5-2.5 A, 11 points) and LiH (1.0-3.0 A, 11 points). Figure 2 presents the potential
energy surfaces comparing VQE (UccsD + L-BFGS-B) against FCI reference.

For He, VQE achieved perfect agreement with FCI across the entire dissociation curve, with
maximum and mean errors both below numerical precision (< 0.0001 mHa). All 11 optimizations
converged in 4-5 iterations, with total scan time of 1.0 s.

For LiH, VQE maintained chemical accuracy throughout the dissociation curve, with maximum
error of 0.0502 mHa at the compressed geometry (1.0 A) and mean error of 0.0127 mHa. The
slightly elevated error at compressed geometries reflects increased electron correlation in this
regime, yet remains well within the chemical accuracy threshold. The complete LiH scan required
457.1 s, with individual optimizations converging in 17-26 iterations.

These results demonstrate VQE’s capability to accurately capture the electronic structure

changes accompanying bond breaking, a regime where single-reference classical methods such
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H: Potential Energy Surface LiH Potential Energy Surface
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Figure 2: Potential energy surface scans for Hy and LiH. (a) Hy dissociation curve from
0.5 A to 2.5 A showing perfect overlap between VQE (blue) and FCI (red dashed). Maximum
error: 0.0000 mHa. (b) LiH dissociation curve from 1.0 A to 3.0 A demonstrating excellent
agreement between VQE and FCI. Maximum error: 0.0502 mHa at the compressed geometry
(1.0 A); mean error: 0.0127 mHa. Chemical accuracy is maintained throughout the entire
dissociation region for both molecules.

as HF catastrophically fail. The ability to describe multi-reference character is essential for

applications in photochemistry, catalysis, and materials science.

3.3 Scalability: BeH,; and H,O

We next assessed VQE resource requirements and accuracy for larger systems: BeHs (6 electrons, 8
qubits) and HoO (10 electrons, 12 qubits). Table 3 compares ansatz performance using L-BFGS-B

optimization.

Table 3: Ansatz comparison for BeHs and H2O.

Molecule Ansatz Parameters Error (mHa) Accuracy Iterations Time (s)

BeH, UCCSD 56 0.37 v 15 14.2
BeH, HEA (3L) 72 582.7 X 23 19.6
BeHs Adaptive 40 647.4 X 62 51.4
H>O UCCSD 92 0.17 v 12 19.3
H->O HEA (3L) 108 901.3 X 38 56.9
H>O Adaptive 60 556.0 X 121 176.8

uccsD achieved chemical accuracy for both molecules (0.37 mHa for BeHs, 0.17 mHa for
H»0), converging efficiently in 12-15 iterations. In stark contrast, both HEA and Adaptive
anséitze failed dramatically, with errors exceeding 500 mHa—more than 300 times the chemical
accuracy threshold.

The failure of HEA and Adaptive ansétze illustrates the barren plateau phenomenon (McClean
et al., 2018). Despite having comparable or greater parameter counts than UCCSD, these ansitze
lack the chemical structure necessary for effective optimization in high-dimensional spaces. For

systems beyond 8 qubits, gradient magnitudes decay exponentially with circuit depth, rendering
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optimization ineffective regardless of iteration count.
Figure 3 visualizes the ansatz performance comparison, highlighting the dramatic accuracy

gap between chemically-motivated and heuristic ansétze.

BeH: (8 qubits): Accuracy vs Ansatz H20 (12 qubits): Accuracy vs Ansatz
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Figure 3: Ansatz accuracy comparison for BeHy; and H;O. VQE error (mHa) versus
ansatz type, with the chemical accuracy threshold (1.6 mHa) shown as a red dashed line. uccsD
achieves chemical accuracy for both molecules (green bars), while Hardware-Efficient (HEA) and
Adaptive ansétze fail by orders of magnitude (red bars), demonstrating barren plateau effects in
systems >8 qubits.

3.4 Resource Scaling Analysis

Figure 4 presents the scaling of quantum resources with molecular complexity. Qubit requirements
grew from 4 (Hs) to 12 (H20), remaining manageable through active space reduction that froze
chemically inert core orbitals. UCCSD parameter counts scaled from 3 (Hz) to 92 (H20), following
the expected O(N*) behavior for coupled cluster methods.

Qubit Count vs System Size 12 UCCSD Parameters vs System Size

6T (IUETT
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Number of Parameters
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Figure 4: Resource scaling analysis. (a) Qubit count versus molecular system. Active
space reduction maintains tractable qubit requirements (4-12 qubits). (b) UCCSD parameter
count versus system size. Parameter scaling remains manageable (<92 parameters) for classical
optimization of molecules up to H2O.

Critically, the parameter counts observed (3-92) remain well within the regime where classical
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optimizers can function effectively. The L-BFGS-B algorithm, with its O(n) memory scaling for
n parameters, handles these optimization problems efficiently. However, extrapolating to larger
molecules suggests that both qubit and parameter requirements will grow rapidly, with systems
beyond 50 orbitals likely requiring advances in circuit compilation, ansatz design, or hardware

capabilities.

3.5 Noise Robustness Analysis

To assess N1SQ hardware compatibility, we characterized VQE performance under depolarizing

noise for Hy. Table 4 presents results across noise rates spanning four orders of magnitude.

Table 4: VQE performance under depolarizing noise (Hz, uccsD, L-BFGS-B).

Noise Rate VQE Energy (Ha) Error (mHa) Chemical Accuracy

1.0 x 1074 —1.1371 0.19 v
5.0 x 1074 —1.1364 0.93 v
1.0 x 1073 —1.1354 1.85 X
5.0 x 1073 —1.1280 9.25 X
1.0 x 1072 —1.1188 18.44 X
5.0 x 1072 —1.0472 90.10 X
1.0 x 1071 —0.9618 175.47 X

Chemical accuracy was maintained for noise rates up to approximately 5 x 1074, The
breakdown threshold—where error first exceeded 1.6 mHa—occurred between 5 x 10~* and
1 x 1073. Beyond this threshold, error scaled approximately linearly with noise rate on a log-log
plot, as visualized in Figure 5.

These findings have significant implications for NISQ quantum chemistry. Current quantum
devices exhibit typical gate fidelities of 99.5-99.9% (error rates 1073-5 x 1073) for two-qubit gates
(Arute et al., 2019; Google Al Quantum and Collaborators, 2020). Our benchmark indicates that
unmitigated VQE at these error rates produces errors of 1.85-9.25 mHa—1-6x above the chemical
accuracy threshold. Error mitigation techniques such as zero-noise extrapolation (Temme et al.,
2017) or probabilistic error cancellation (Kandala et al., 2019) are therefore essential for chemically

meaningful results on current hardware.

4 Discussion

4.1 Ansatz Design Trade-offs

The stark performance difference between UCCSD and heuristic ansétze highlights a fundamental
tension in NISQ algorithm design. UCCSD’s chemical structure ensures expressibility and train-
ability: excitation operators are tailored to the molecular Hamiltonian, producing non-vanishing
gradients that guide optimization toward the ground state. However, UCCSD circuits scale steeply
with system size, with gate counts growing as O(N*), limiting practical applicability to molecules
with approximately 20-30 orbitals on near-term devices.

Hardware-efficient and adaptive ansédtze sacrifice chemical motivation for circuit efficiency,

but our results demonstrate that this trade-off is unfavorable for molecules beyond 8 qubits. The
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VQE Noise Robustness: H2> with UCCSD + L-BFGS-B
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Figure 5: Noise robustness analysis. Log-log plot of VQE error versus depolarizing noise
rate for Hy. The chemical accuracy threshold (1.6 mHa) is shown as a red dashed horizontal
line. Chemical accuracy is maintained up to noise rate ~ 5 x 1074, The breakdown threshold
(vellow shaded region) lies between 5 x 10~% and 10~3. Current N1SQ devices typically operate at
error rates of 10731072 (orange shaded region), indicating that error mitigation is essential for
reliable quantum chemistry applications.
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barren plateau phenomenon—exponentially vanishing gradients in high-dimensional parameter
spaces—renders optimization ineffective regardless of the optimizer employed. For BeHy and
H>O, these ansitze produced errors exceeding 500 mHa, more than two orders of magnitude
above chemical accuracy.

The implication for NISQ quantum chemistry is clear: chemically-motivated ansatze are
essential for scalable vQE. While circuit depth presents challenges for noisy hardware, the
alternative—anséitze that cannot be trained—offers no practical value. Future research should
focus on ansatz families that preserve chemical structure while reducing circuit complexity, such

as factorized UCCSD variants or problem-tailored adaptive approaches.

4.2 The Critical Role of Gradient-Based Optimization

Our results underscore that VQE success depends as much on classical optimization as on
quantum circuit design. L-BFGS-B’s 10-23x speedup over gradient-free COBYLA is not merely
a performance improvement; for LiH, it represents the difference between achieving chemical
accuracy (0.16 mHa) and failing (2.34 mHa).

The gradient implementation bug we encountered—parameters not marked as trainable—
highlights a subtle but critical detail in quantum software frameworks. Automatic differentiation
requires explicit flagging of differentiable parameters, a requirement that is often implicit and easily
overlooked. Silent failures (single-iteration “convergence” at initial parameters) can masquerade
as algorithmic limitations when they are in fact implementation errors.

For practitioners, the lesson is clear: gradient-based optimization with analytic deriva-
tives is essential for chemical accuracy. The parameter-shift rule provides exact gradients for
parameterized quantum circuits, and modern quantum software frameworks (PennyLane, Qiskit)
support automatic differentiation. Gradient-free methods may be useful for hyperparameter

exploration or warm-starting, but final convergence should employ gradient-based refinement.

4.3 Noise: The Rate-Limiting Factor for NISQ Chemistry

The noise robustness analysis reveals a sobering reality: current N1SQ devices are marginally
capable of unmitigated VQE for quantum chemistry. With typical gate error rates of
1073-1072, our Hy benchmark shows errors of 1.85-18.44 mHa—well above the 1.6 mHa chemical
accuracy threshold.

Three pathways exist to address this challenge. First, hardware improvement could re-
duce gate error rates below 5 x 10™4, requiring approximately 10x improvement from current
technology. Second, error mitigation techniques such as zero-noise extrapolation, probabilistic
error cancellation, and symmetry verification can suppress effective error rates at the cost of
increased sampling overhead (Kandala et al., 2019; Temme et al., 2017). Third, circuit compres-
sion through gate synthesis optimization, problem-specific compilation, and alternative ansatz
parameterizations can reduce the total gate count and thereby the cumulative error.

Error mitigation offers the most near-term promise. Recent demonstrations have achieved
effective error suppression sufficient for chemical accuracy on small molecules (Google AT Quantum

and Collaborators, 2020). However, our results quantify the required mitigation strength: at

11
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least 5—-10x error reduction is needed for current hardware to reliably achieve chemical

accuracy on molecules of the complexity studied here.

4.4 Potential Energy Surfaces: Validating Multi-Reference Capability

The near-perfect agreement between VQE and FCI across He and LiH dissociation curves is
particularly significant. Bond breaking represents one of the most challenging regimes in electronic
structure theory, where static correlation dominates and single-reference methods catastrophically
fail. The HF approximation, for example, predicts qualitatively incorrect dissociation limits due
to its inability to describe multi-configurational character.

VQE’s success in this regime—maintaining sub-0.1 mHa mean error even at stretched
geometries—demonstrates its ability to capture strong correlation, a hallmark of its coupled
cluster ancestry. This capability is essential for modeling photochemical processes, transition

states, and catalytic mechanisms where bonds are formed and broken.

4.5 Toward Quantum Advantage in Chemistry

Do these results demonstrate quantum advantage? Not yet. Classical FCI becomes intractable
around 30 orbitals (~60 qubits), but our benchmark is limited to 12 qubits. Furthermore,
classical methods such as Density Matrix Renormalization Group (DMRG) (White, 1992) and
Full Configuration Interaction Quantum Monte Carlo (FCIQMC) (Booth et al., 2009) can handle
many systems beyond FCI’s reach with polynomial scaling.

However, this work establishes critical operational parameters for near-term quantum

chemistry applications:

e Target system size: 30-50 qubits (molecules comparable to small transition metal

complexes)
¢ Required gate fidelity: > 99.95% (error rate < 5 x 10~%) for unmitigated operation
e Ansatz choice: UCCsD or adaptive with problem-aware structure
e Optimization: Gradient-based with analytic derivatives

Meeting these requirements will position VQE to tackle molecules where classical methods
struggle: transition metal complexes with multiple unpaired electrons, photocatalysts with
near-degenerate electronic states, and strongly-correlated materials exhibiting metal-insulator

transitions.

4.6 Limitations

Several limitations temper our conclusions. First, the depolarizing noise model is uniform
and gate-independent; realistic NISQ devices exhibit spatially and temporally correlated errors,
crosstalk, and readout noise that may produce different failure modes. Second, active space
truncation introduces systematic error (~0.1-1 mHa), complicating direct comparison with full-
space calculations. Third, the STO-3G minimal basis set, while standard for quantum computing

benchmarks, is insufficient for quantitative chemical accuracy in applications; larger bases such

12
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as cc-pVDZ or larger are typically required (Helgaker et al., 1997). Fourth, our benchmark suite
of four molecules does not comprehensively represent chemical space; transition metals, radicals,
and excited states remain untested. Finally, classical simulation with exact density matrices may

miss failure modes present on real quantum hardware.

5 Conclusions

This comprehensive benchmarking study establishes quantitative performance metrics for Vari-
ational Quantum Eigensolver applications in quantum chemistry. Our key conclusions are as
follows.

First, VQE achieves chemical accuracy across the molecular benchmark suite when using
the uccsD ansatz with L-BFGS-B optimization. Ground state energies within 1.6 mHa of Full
Configuration Interaction were obtained for all molecules tested (Hs, LiH, BeHy, Ho0), spanning
4-12 qubits.

Second, gradient-based optimization is essential for both accuracy and efficiency. L-BFGS-B
converged 10-23x faster than gradient-free COBYLA and achieved superior final accuracy, but
requires careful implementation to ensure proper gradient flow through automatic differentiation
frameworks.

Third, noise tolerance limits the practical utility of unmitigated vQE. Chemical accuracy was
maintained only for gate error rates < 5 x 1074, requiring either significant hardware improvement
or error mitigation techniques for current NISQ devices operating at 10731072 error rates.

Fourth, ansatz choice critically determines scalability. Chemically-motivated ansétze (UCCSD)
avoid barren plateaus and scale successfully to 12 qubits, while hardware-efficient ansétze fail
beyond 8 qubits due to exponentially vanishing gradients.

Fifth, potential energy surface fidelity validates VQE’s multi-reference capability. Near-perfect
agreement with FCI across bond dissociation curves for Hy and LiH demonstrates the algorithm’s
ability to capture strong electron correlation in chemically challenging regimes.

These findings establish clear operational requirements for achieving quantum advantage
in chemistry: gate fidelities exceeding 99.95%, system sizes beyond 30 qubits, problem-aware
ansatz design, and gradient-based optimization with analytic derivatives. The path to practical
quantum chemistry is now quantitatively mapped; with continued hardware improvements and
algorithmic innovations, VQE stands poised to deliver transformative capabilities for molecular

modeling in the NISQ era and beyond.
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Data Availability

All raw data, analysis scripts, and computational notebooks supporting this study are available in
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VQE optimization results (vqe_results_x.pkl), potential energy surface data (pes_data.pkl),

and noise analysis results (noise_results.pkl).
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