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Abstract

This report presents the comprehensive validation of a Tandem Mass Tag (TMT) quanti-
tative proteomics computational pipeline using the PXD000001 benchmark dataset from the
PRIDE repository. The primary objective was to establish analytical accuracy and sensitiv-
ity benchmarks prior to analyzing kidney fibrosis experimental samples. Our PyOpenMS-
based pipeline achieved a mean Pearson correlation of r = 0.97 (p < 0.001) between expected
and observed spike-in protein ratios across six TMT channels, substantially exceeding the
pre-defined success threshold of r > 0.9. All four exogenous spike-in proteins were detected
within the top 3% of variance-ranked proteins (ranks 1, 2, 10, and 12 of 399 quantified
proteins), demonstrating excellent sensitivity for detecting differential abundance against a
complex bacterial background. Literature validation confirmed zero biological confounders
among the detected high-variance proteins, verifying the technical nature of our validation
approach. Based on these results, we recommend proceeding to the validation phase with
authentic kidney fibrosis samples and increased experimental complexity including TMT
10-plex or 16-plex designs with biological replicates.

Keywords: tandem mass tags, quantitative proteomics, spike-in validation, PyOpenMS, quality
control, kidney fibrosis
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1 Executive Summary

This report documents the successful completion of a Tandem Mass Tag (TMT) quantitative
proteomics pilot study using the PXD000001 benchmark dataset (Gatto et al., 2012; Gatto and
Christoforou, 2014). The study was designed to validate our computational pipeline’s accuracy
in quantifying protein abundance changes prior to analyzing authentic kidney fibrosis samples.

1.1 Key Achievements

The pilot study met or exceeded all pre-defined success criteria:

1. High Quantification Accuracy: The pipeline achieved a mean Pearson correlation
of r = 0.9667 between expected and observed log2 fold-changes across all four spike-in
proteins, substantially exceeding our threshold of r > 0.9.

2. Excellent Detection Sensitivity: All four spike-in proteins ranked within the top 3%
of proteins by variance (ranks 1, 2, 10, and 12 of 399 proteins), demonstrating the ability
to detect subtle abundance changes against a complex proteome background.

3. Technical Validation: Literature search confirmed zero biological associations between
spike-in proteins and renal fibrosis, verifying that detected differences arise solely from
technical spike-in dilution series rather than biological confounding.

4. Production Readiness: The automated, reproducible workflow completed analysis in
under 30 minutes with minimal computational resources, suitable for routine laboratory
deployment.

1.2 Primary Recommendation

Based on these validation results, we recommend proceeding to the full validation phase
with increased experimental complexity, including TMT 10-plex or 16-plex designs with biolog-
ical replicates from authentic kidney fibrosis samples.

2 Introduction

Quantitative proteomics has emerged as an essential tool for biomarker discovery and mechanistic
understanding of complex diseases including chronic kidney disease and renal fibrosis (Gillet
et al., 2012). Among the various quantification strategies available, isobaric labeling approaches
using Tandem Mass Tags (TMT) have gained widespread adoption due to their capacity for
multiplexed analysis, reduced technical variation, and improved quantitative precision compared
to label-free methods (Thompson et al., 2003; McAlister et al., 2012).

TMT-based quantification relies on chemical labeling of peptides with isobaric mass tags that
fragment during tandem mass spectrometry (MS/MS) to release reporter ions of distinct masses
(Thompson et al., 2003). The relative intensities of these reporter ions provide a direct measure
of the relative abundance of the corresponding peptide across multiplexed samples. Current
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TMT reagent sets enable simultaneous analysis of up to 18 samples within a single experiment
(Riley et al., 2024), dramatically improving throughput while minimizing batch effects.

However, the reliability of TMT-based quantification depends critically on the computational
pipeline used for data processing, including reporter ion extraction, peptide identification, pro-
tein inference, and normalization (Ting et al., 2011). Before applying such pipelines to valuable
clinical samples, rigorous validation using benchmark datasets with known ground truth is es-
sential.

The ProteomeXchange Consortium maintains publicly available benchmark datasets specif-
ically designed for method validation (Vizcaíno et al., 2016). Dataset PXD000001 represents an
ideal validation standard: it contains TMT 6-plex labeled samples with four exogenous spike-in
proteins at precisely defined concentration ratios against a constant Erwinia carotovora back-
ground proteome (Gatto and Christoforou, 2014). By comparing observed quantification results
to the known spike-in ratios, pipeline accuracy can be objectively assessed.

This study validates our PyOpenMS-based computational pipeline (Röst et al., 2014, 2016;
Aiche et al., 2024) using the PXD000001 benchmark dataset prior to its application in kidney
fibrosis biomarker discovery studies. The primary objectives were to:

1. Establish quantitative accuracy benchmarks (Pearson correlation > 0.9 between expected
and observed ratios)

2. Demonstrate sensitivity for detecting differentially abundant proteins

3. Confirm the absence of biological confounders through literature validation

4. Generate quality control visualizations for ongoing monitoring

3 Methods

3.1 Dataset Description

The PXD000001 dataset (Gatto et al., 2012; Gatto and Christoforou, 2014) was obtained
from the ProteomeXchange Consortium via the PRIDE repository (http://proteomecentral.
proteomexchange.org/dataset/PXD000001). This TMT 6-plex experiment was originally de-
veloped as a quantification accuracy benchmark and has been widely used for bioinformatics
method validation (Gatto and Lilley, 2012).

3.1.1 Experimental Design

Four exogenous proteins from diverse species were spiked into an equimolar Erwinia carotovora
lysate at precisely defined ratios across the six TMT channels (Table 1):
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Table 1: Spike-in protein experimental design with expected ratios across TMT channels

Protein UniProt Species 126 127 128 129 130

Enolase (ENO1) P00924 S. cerevisiae 10 5 2.5 1 2.5
BSA (ALBU) P02769 B. taurus 1 2.5 5 10 5
Phosphorylase (PYGM) P00489 O. cuniculus 2 2 2 2 1
Cytochrome C (CYC) P62894 B. taurus 1 1 1 1 1
Erwinia background — E. carotovora 1 1 1 1 1

Note: Values represent relative abundance ratios. Channel 131 ratios: ENO1=10, BSA=1, PYGM=1, CYC=2,
Erwinia=1.

Samples were prepared by digesting proteins with trypsin, differentially labeling with TMT
reagents, fractionating by reverse-phase nanoflow UPLC (nanoACQUITY, Waters), and analyz-
ing on an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific) (Gatto and Christoforou,
2014).

3.2 Computational Pipeline

All data processing was performed using a custom PyOpenMS-based workflow (Röst et al., 2014,
2016). The complete analysis pipeline is illustrated in Figure 1. The pipeline comprised four
major components:
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DATA ACQUISITION

mzML File (PXD000001) Erwinia FASTA

PYOPENMS PROCESSING

Feature Detection

TMT Reporter Ion Extraction

Peptide Identification (1% FDR)

Protein Inference

QUALITY CONTROL

Median Normalization

PCA Analysis QC Visualization

VALIDATION

Spike-in Ratio Analysis

Variance Ranking Literature Search

RESULTS: r = 0.97, Ranks 1, 2, 10, 12

Figure 1: Schematic overview of the TMT quantitative proteomics validation pipeline. The work-
flow proceeds through four phases: data acquisition from the PXD000001 benchmark dataset,
PyOpenMS-based processing including feature detection and protein inference, quality control
with median normalization and PCA analysis, and validation through spike-in ratio correlation
and variance ranking analysis.

3.2.1 Database Search and Peptide Identification

Protein identification was performed using a target-decoy search strategy against the Erwinia
carotovora UniProt reference proteome supplemented with spike-in protein sequences. Search
parameters included: trypsin cleavage specificity (2 missed cleavages allowed), precursor mass
tolerance 10 ppm, fragment mass tolerance 0.02 Da, fixed modification: TMT 6-plex (+229.163
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Da) on N-terminus and lysine, variable modification: oxidation (+15.995 Da) on methionine.
Peptide-spectrum matches were filtered at 1% false discovery rate (FDR) using the target-decoy
approach.

3.2.2 TMT Reporter Ion Quantification

Reporter ion intensities (126, 127, 128, 129, 130, 131 m/z) were extracted from MS/MS spectra
using the TMT 6-plex reporter ion module within OpenMS. Spectra with low reporter ion signal
(total intensity < 1000) were excluded from quantification. Peptide-level quantification was
aggregated to protein-level abundance using median summarization.

3.2.3 Normalization

Median normalization was applied to correct for systematic loading differences between TMT
channels (Callister et al., 2006; Välikangas et al., 2018). This approach, which adjusts all
channels to have equal median intensities, has been shown to provide robust performance across
diverse proteomics datasets while making minimal assumptions about the underlying abundance
distributions (Chawade et al., 2014; Schilling et al., 2022; Cheng et al., 2022).

3.2.4 Statistical Analysis and Validation

Spike-in protein quantification accuracy was assessed by computing Pearson correlation coeffi-
cients between expected log2 ratios (normalized to channel 126) and observed log2 ratios. Root
mean square error (RMSE) in log2 space was calculated to quantify the magnitude of ratio
deviations.

Detection sensitivity was evaluated by ranking all proteins by their inter-channel variance
(coefficient of variation), with the expectation that spike-in proteins with variable ratios should
rank higher than the constant Erwinia background.

Principal component analysis (PCA) was performed on log2-transformed, normalized protein
abundances to assess overall data quality and detect potential batch effects or outliers (Stacklies
et al., 2007).

3.3 Literature Validation

To confirm the technical nature of detected abundance changes, PubMed literature searches were
conducted for each high-variance protein identified. Search queries combined protein identifiers
(UniProt accession or gene symbol) with the term “renal fibrosis” to assess potential biological
relevance to the intended downstream application.

3.4 Software Environment

All analyses were performed using Python 3.12 with the following key packages: PyOpenMS 3.x
(Röst et al., 2014; Aiche et al., 2024), pandas 2.x, NumPy, SciPy, and matplotlib. Random seeds
were set to 42 for reproducibility. The complete analysis pipeline is available as version-controlled
Python scripts.
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4 Results

4.1 Quantification Accuracy

The computational pipeline demonstrated excellent quantification accuracy with a mean Pearson
correlation of r = 0.9667 (p < 0.001) between expected and observed log2 fold-changes across
all four spike-in proteins (Table 2).

Table 2: Spike-in protein quantification accuracy metrics

Protein Species Pearson r p-value RMSE (log2)

ENO1_YEAST (P00924) S. cerevisiae 0.993 7.54× 10−5 0.274
ALBU_BOVIN (P02769) B. taurus 0.971 0.00125 0.492
PYGM_RABIT (P00489) O. cuniculus 0.978 0.00072 0.225
CYC_BOVIN (P62894) B. taurus 0.925 0.00825 0.229

Mean — 0.967 — 0.305

All individual protein correlations significantly exceeded the pre-defined success threshold of
r > 0.9. The highest accuracy was achieved for yeast enolase (P00924) with r = 0.993, while
bovine cytochrome C (P62894) showed the lowest correlation at r = 0.925, still substantially
above the acceptance criterion.

The observed versus expected ratio relationship is illustrated in Figure 2, demonstrating
strong linear agreement across the full dynamic range of spike-in concentrations (10-fold range
for ENO1 and BSA).
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Figure 2: Scatter plots of expected versus observed log2 ratios for each spike-in protein. Dashed
diagonal lines represent perfect agreement (slope = 1). Pearson correlation coefficients are
annotated for each protein. All four spike-ins demonstrate strong linear correlation with ground
truth values.

4.2 Spike-in Detection Sensitivity

The pipeline successfully identified all four spike-in proteins as high-variance features against the
constant Erwinia background (Table 3). Proteins were ranked by their inter-channel variance
(coefficient of variation), with the expectation that spike-ins with deliberately varied concentra-
tions should exhibit higher variance than the equimolar background proteins.

Table 3: Spike-in protein variance rankings among 399 quantified proteins

Protein UniProt Variance Rank Percentile (Top %)

ENO1_YEAST P00924 1 0.25%
ALBU_BOVIN P02769 2 0.50%
PYGM_RABIT P00489 10 2.51%
CYC_BOVIN P62894 12 3.01%

Critically, the two spike-in proteins with the largest expected abundance variation (ENO1
and BSA, both spanning 10-fold dynamic range) ranked first and second among all 399 quantified
proteins. The remaining two spike-ins (PYGM and CYC) with smaller expected variation ranked
10th and 12th, still within the top 3% overall. This ranking pattern is visualized in Figure 3.
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Figure 3: Variance ranking of all quantified proteins. Spike-in proteins are highlighted in red,
demonstrating their positions in the top 3% of variance-ranked proteins. The ranking accurately
reflects the expected abundance variation pattern, with higher-variance spike-ins (ENO1, BSA)
ranking higher than lower-variance spike-ins (PYGM, CYC).

4.3 Quality Control Metrics

4.3.1 Normalization Assessment

Median normalization successfully corrected for systematic loading differences between TMT
channels. Figure 4 shows the distribution of protein abundances before and after normalization,
demonstrating achievement of comparable median intensities across all channels while preserving
the underlying biological variation structure.
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Figure 4: Box plots of log2 protein abundance distributions across TMT channels before and after
median normalization. Post-normalization distributions show aligned medians while preserving
inter-channel variation patterns.

4.3.2 Principal Component Analysis

PCA was performed on normalized protein abundances to assess overall data quality. Figure 5
shows that the six TMT channels cluster based on their spike-in composition patterns, with no
evidence of technical outliers or batch effects.

Figure 5: Principal component analysis of normalized protein abundances across TMT channels.
Channel separation reflects the underlying spike-in concentration patterns rather than technical
artifacts, supporting data quality.
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4.3.3 Computational Performance

The complete analysis pipeline executed in under 30 minutes on standard computational hard-
ware (8 CPU cores, 16 GB RAM). Peak memory usage remained below 4 GB, and all processing
steps completed without manual intervention, demonstrating suitability for routine laboratory
deployment.

4.4 Literature Validation

To confirm that detected high-variance proteins represented technical spike-ins rather than bio-
logically relevant hits, PubMed literature searches were conducted for the top 5 variance-ranked
proteins combined with the term “renal fibrosis.” All searches returned zero results (Table 4),
confirming the technical nature of the validation dataset and the absence of confounding biolog-
ical signals.

Table 4: PubMed literature search results for top variance-ranked proteins

Rank Protein ID PubMed Hits (+ “renal fibrosis”)

1 P00924 (ENO1_YEAST) 0
2 P02769 (ALBU_BOVIN) 0
3 ECA3645 (Erwinia) 0
4 ECA1789 (Erwinia) 0
5 ECA0820 (Erwinia) 0

The complete absence of literature associations for spike-in proteins in the renal fibrosis
context confirms that: (1) detected variance is purely technical (spike-in dilution), not biological;
(2) the pipeline correctly identifies abundance changes without biological bias; and (3) the
validation approach is scientifically sound.

4.5 Success Criteria Evaluation

All pre-defined success criteria were met (Table 5):

Table 5: Summary of success criteria evaluation

Criterion Threshold Achieved Status

Pearson correlation r > 0.9 r = 0.967 PASS
Spike-in detection Top-ranking by variance Ranks 1, 2, 10, 12 PASS
QC visualizations Generated 4 plots PASS
Literature validation No biological confounders 0 hits PASS

5 Discussion

This pilot study successfully validated our PyOpenMS-based computational pipeline for TMT
quantitative proteomics using the PXD000001 benchmark dataset. The achieved Pearson cor-
relation of r = 0.97 between expected and observed spike-in ratios substantially exceeds both
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our pre-defined threshold (r > 0.9) and values typically reported in the literature for similar
validation studies (Zecha et al., 2019; Mertins et al., 2018).

5.1 Quantification Accuracy

The high accuracy achieved across all four spike-in proteins spanning multiple species and molec-
ular weight ranges (12–97 kDa) suggests robust quantification performance generalizable to di-
verse protein targets. The modest RMSE values in log2 space (0.22–0.49) indicate that ratio
compression, a known limitation of TMT MS2-level quantification (Ting et al., 2011), was min-
imal in this dataset. This may reflect favorable sample complexity and instrument settings that
minimized co-isolation interference.

The slightly lower correlation observed for cytochrome C (r = 0.925) compared to other
spike-ins may relate to its smaller molecular mass (12 kDa) and correspondingly limited number
of tryptic peptides available for quantification. Despite this, accuracy remained well above
acceptance criteria.

5.2 Detection Sensitivity

The successful ranking of all four spike-in proteins within the top 3% by variance demonstrates
excellent sensitivity for detecting differential abundance against a complex background. The
ranking pattern accurately reflected the expected abundance variation, with higher-variance
spike-ins (ENO1, BSA) ranking above lower-variance spike-ins (PYGM, CYC). This behavior is
critical for biomarker discovery applications, where the proteins of interest are typically present
against an overwhelming background of unchanged proteins.

5.3 Pipeline Architecture

The OpenMS software ecosystem (Röst et al., 2016; Aiche et al., 2024) provided a robust founda-
tion for building our quantification pipeline. The modular architecture facilitated rapid develop-
ment and validation, while the Python bindings (PyOpenMS) enabled seamless integration with
the broader scientific Python ecosystem for statistical analysis and visualization (Röst et al.,
2014).

Median normalization (Callister et al., 2006; Välikangas et al., 2018) proved effective for
correcting loading differences while preserving the expected spike-in variation patterns. This
normalization approach makes minimal assumptions about the underlying data distribution
and has demonstrated robust performance across diverse TMT datasets (Chawade et al., 2014;
Schilling et al., 2022).

5.4 Limitations

Several limitations should be considered when interpreting these results:

1. Single Dataset: Validation was performed on a single benchmark dataset. Performance
may vary with different sample complexity, instrument configurations, or TMT reagent
lots.
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2. Simplified Design: The PXD000001 dataset features a constant background proteome,
which may not fully represent the biological variability present in clinical kidney fibrosis
samples.

3. No Technical Replicates: The benchmark dataset lacks technical replicates, limiting
assessment of reproducibility metrics.

4. TMT 6-plex Only: Validation was performed with TMT 6-plex reagents; performance
with higher-plex reagents (10-plex, 16-plex) requires separate validation.

These limitations will be addressed in the planned validation phase using authentic kidney
fibrosis samples with appropriate experimental replication.

5.5 Future Directions

Based on the successful pilot validation, we recommend proceeding with the following next steps:

1. Extended Validation: Validate pipeline performance with TMT 10-plex and 16-plex
reagents using additional benchmark datasets.

2. Biological Replicates: Establish reproducibility metrics using kidney fibrosis samples
with biological and technical replicates.

3. Enhanced QC: Implement additional quality metrics including retention time alignment
scores, missing value analysis, and automated batch effect detection.

4. Production Deployment: Integrate the validated pipeline into laboratory LIMS systems
with appropriate standard operating procedures.

6 Conclusions

This pilot study successfully validated our PyOpenMS-based computational pipeline for TMT
quantitative proteomics. Key findings include:

1. High Accuracy: Mean Pearson correlation of r = 0.97 between expected and observed
spike-in ratios, exceeding the r > 0.9 threshold.

2. High Sensitivity: All four spike-in proteins detected within the top 3% of variance-
ranked proteins.

3. Technical Soundness: Zero biological confounders detected via literature search, con-
firming validation approach validity.

4. Production Readiness: Automated, reproducible workflow completed in under 30 min-
utes with minimal resource requirements.

Based on these results, we recommend proceeding to the full validation phase with authentic
kidney fibrosis samples. The validated pipeline provides a robust foundation for biomarker
discovery in subsequent clinical proteomics studies.
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