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Abstract

Background: Heart rate variability (HRV) serves as a non-invasive biomarker reflecting
autonomic nervous system function, with demonstrated sensitivity to psychological stress
states. The development of reliable HRV-based stress detection algorithms has significant
implications for wearable health monitoring and preventive mental health interventions.
Methods: We analyzed electrocardiogram (ECG) recordings from the WESAD (Wearable
Stress and Affect Detection) dataset comprising 15 subjects who underwent the standardized
Trier Social Stress Test (TSST). Raw ECG signals were preprocessed using bandpass filter-
ing (0.5-40 Hz), and eight HRV features were extracted: time-domain metrics (Meanyny,
SDNN, RMSSD, pNN50), frequency-domain measures (LF, HF, LF/HF ratio), and nonlin-
ear indices (sample entropy). Statistical comparisons employed Mann-Whitney U tests with
false discovery rate (FDR) correction. Four machine learning classifiers (XGBoost, Random
Forest, SVM, Logistic Regression) were evaluated using Leave-One-Subject-Out (LOSO)
cross-validation to ensure subject-independent generalizability.

Results: All eight HRV features demonstrated statistically significant differences between
baseline and stress conditions (p < 0.05, FDR-corrected). The largest effect sizes were
observed for pNN50 (Cohen’s d = 3.33, large), Meanny (d = 1.52, large), and sample entropy
(d = 0.69, medium). Random Forest achieved the highest classification accuracy (98.81%, F1
= 0.988), followed by SVM (98.21%), Logistic Regression (97.62%), and XGBoost (97.02%).
All models achieved ROC-AUC > 0.997, indicating excellent discriminative performance.
Feature importance analysis revealed pNN50 as the dominant predictor (78.6% importance),
followed by Meanxy (11.7%).

Conclusions: HRV features, particularly pNN50 and Meanyy, provide robust biomarkers
for distinguishing stress from rest states with high accuracy using machine learning classi-
fiers. These findings support the feasibility of wearable HRV-based stress monitoring systems
for real-world health applications.

Keywords: Heart rate variability, stress detection, autonomic nervous system, machine
learning, wearable sensors, WESAD dataset, XGBoost, Random Forest
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Figure 1: Graphical Abstract. Overview of the HRV-based stress detection pipeline: ECG
signals from the WESAD dataset undergo preprocessing and feature extraction, followed by
statistical analysis and machine learning classification achieving 97-99% accuracy for distin-
guishing stress from baseline states.
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1 Introduction

Psychological stress represents a significant public health concern with profound implications
for both mental and physical well-being (Kim et al., 2018). Chronic stress exposure has been
linked to cardiovascular disease, immune dysfunction, and psychiatric disorders, underscoring
the importance of objective stress monitoring tools for preventive healthcare (Thayer et al.,
2012). While traditional stress assessment relies on self-report questionnaires, these measures
are subjective, intermittent, and susceptible to recall bias, limiting their utility for continuous
real-world monitoring.

1.1 Heart Rate Variability as a Stress Biomarker

Heart rate variability (HRV) refers to the beat-to-beat fluctuations in the time intervals between
successive heartbeats, reflecting the dynamic interplay between sympathetic and parasympa-
thetic branches of the autonomic nervous system (ANS) (Task Force of the European Society of
Cardiology and the North American Society of Pacing and Electrophysiology, 1996; Shaffer and
Ginsberg, 2017). Under resting conditions, the parasympathetic (vagal) branch predominates,
maintaining higher HRV through respiratory sinus arrhythmia. During stress, sympathetic ac-
tivation and parasympathetic withdrawal result in characteristic HRV reductions, particularly
in vagally-mediated metrics (Agorastos et al., 2023).

The neurovisceral integration model proposed by Thayer et al. (2012) positions HRV as a
peripheral index of prefrontal-subcortical circuit integrity, linking reduced HRV to diminished
executive function and emotional regulation capacity. Similarly, the polyvagal theory (Porges,
2007) emphasizes the vagus nerve’s role in mediating physiological states associated with social
engagement versus defensive stress responses. These theoretical frameworks establish HRV as
a biologically meaningful and clinically relevant stress biomarker.

1.2 HRYV Metrics and Their Physiological Interpretation

HRV analysis encompasses three complementary domains of measurement (Task Force of the
European Society of Cardiology and the North American Society of Pacing and Electrophysi-
ology, 1996; Shaffer and Ginsberg, 2017):

Time-Domain Metrics: Standard deviation of NN intervals (SDNN) reflects overall HRV
magnitude and autonomic tone. The root mean square of successive differences (RMSSD) and
percentage of successive intervals differing by >50 ms (pNN50) specifically index parasympa-
thetic activity due to their sensitivity to high-frequency vagal modulation.

Frequency-Domain Metrics: Spectral analysis decomposes HRV into low-frequency (LF;
0.04-0.15 Hz) and high-frequency (HF; 0.15-0.40 Hz) components. While HF power reflects
parasympathetic activity, LF power represents mixed sympathetic-parasympathetic influences.
The LF/HF ratio has been proposed as an index of sympathovagal balance, though this inter-
pretation remains debated (Quintana and Heathers, 2014).

Nonlinear Metrics: Sample entropy (SampEn) quantifies signal complexity and regu-
larity, with lower entropy indicating more predictable, less adaptive physiological dynamics
characteristic of stress states (Richman and Moorman, 2000).

1.3 Wearable Technology and Stress Detection

The proliferation of wearable biosensors has created unprecedented opportunities for continuous,
unobtrusive physiological monitoring (Can et al., 2019; Schmidt et al., 2019). Consumer devices
including smartwatches and fitness trackers now incorporate photoplethysmography (PPG) sen-
sors capable of estimating heart rate and, in some cases, HRV metrics (Sheridan et al., 2021).
Research-grade wearables with electrocardiography (ECG) capabilities provide higher signal
fidelity for precise HRV computation.
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Machine learning approaches have demonstrated substantial promise for automated stress
classification using HRV features (Giannakakis et al., 2022; Can et al., 2019). Algorithms in-
cluding Support Vector Machines (SVM), Random Forests, and gradient boosting methods have
achieved high classification accuracies on benchmark datasets (Gjoreski et al., 2017). However,
challenges remain regarding cross-subject generalizability, motion artifact robustness, and real-
world validation (Johnson et al., 2024; Oliver and Dakshit, 2024).

1.4 The WESAD Dataset

The Wearable Stress and Affect Detection (WESAD) dataset (Schmidt et al., 2018) provides a
valuable benchmark for developing and evaluating stress detection algorithms. This multimodal
dataset includes physiological recordings from 15 subjects during baseline, stress (induced via
the Trier Social Stress Test), and amusement conditions. The TSST represents a standardized
laboratory stressor involving public speaking and mental arithmetic tasks, reliably eliciting
hypothalamic-pituitary-adrenal (HPA) axis activation and sympathetic nervous system arousal
(Kirschbaum et al., 1993).

1.5 Study Objectives

The present study aimed to:

1. Extract and characterize HRV features from WESAD ECG recordings during baseline
and stress conditions

2. Evaluate the statistical significance and effect sizes of HRV changes associated with stress
3. Develop and compare machine learning classifiers for binary stress/baseline discrimination
4. Assess model generalizability using subject-independent validation

5. Identify the most discriminative HRV features for stress detection

2 Methods

2.1 Dataset Description
2.1.1 WESAD Overview

The WESAD (Wearable Stress and Affect Detection) dataset was collected by Schmidt et al.
(2018) at the Technical University of Munich. The study included 15 healthy participants (12
males, 3 females; mean age 27.5 £+ 2.4 years) who provided informed consent for data collection
and publication.

Physiological signals were recorded using the RespiBAN Professional chest-worn device
(Plux Biosignals), which captured ECG at 700 Hz alongside electrodermal activity (EDA), elec-
tromyogram (EMG), respiration, skin temperature, and tri-axial acceleration. Additionally, an
Empatica E4 wristband recorded blood volume pulse (BVP) and other signals for multi-device
comparison.

2.1.2 Experimental Protocol
Participants underwent a standardized affective elicitation protocol comprising:
e Baseline: 20-minute relaxation period with neutral reading material

o Stress: Trier Social Stress Test (TSST) involving 5-minute prepared speech and 5-minute
mental arithmetic performed before an evaluative panel (Kirschbaum et al., 1993)
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e« Amusement: Viewing of humorous video clips

e Recovery: Guided meditation for physiological de-escalation

For the present binary classification task, we analyzed Baseline and Stress conditions, as
these represent the clinically relevant contrast for stress monitoring applications.
2.2 Signal Preprocessing
2.2.1 ECG Filtering

Raw ECG signals were preprocessed using a multi-stage filtering pipeline:

1. Bandpass Filtering: A 4th-order Butterworth bandpass filter (0.5-40 Hz) removed
baseline drift and high-frequency noise while preserving QRS complex morphology

2. Notch Filtering: Optional 50 Hz notch filter for power line interference suppression
3. Signal Quality Assessment: Visual inspection and signal-to-noise ratio (SNR) compu-
tation confirmed adequate signal quality for subsequent analysis
2.2.2 R-Peak Detection

R-peaks were identified using an established Pan-Tompkins-based algorithm optimized for the
700 Hz sampling rate. The detection pipeline incorporated:

e Derivative-based QRS enhancement
o Adaptive thresholding with refractory period constraints

» False positive rejection based on physiologically plausible RR interval ranges (300—2000
ms)
2.2.3 Windowing and Segmentation

Continuous recordings were segmented into 60-second windows with 50% overlap, providing suf-
ficient duration for reliable frequency-domain HRV estimation (Task Force of the European Soci-
ety of Cardiology and the North American Society of Pacing and Electrophysiology, 1996). Each
window was labeled according to the concurrent experimental condition (Baseline or Stress).
2.3 HRV Feature Extraction

FEight HRV features spanning three analytical domains were computed for each 60-second win-
dow:

2.3.1 Time-Domain Features

o Meannn: Mean of normal-to-normal (NN) intervals in milliseconds
e« SDNN: Standard deviation of NN intervals, reflecting overall HRV magnitude

« RMSSD: Root mean square of successive NN differences, indexing short-term vagal ac-
tivity

e pNNB50: Percentage of successive NN intervals differing by >50 ms, a parasympathetic
marker
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2.3.2 Frequency-Domain Features

Power spectral density (PSD) was estimated using Welch’s method with Hamming windows:

o LF: Low-frequency power (0.04-0.15 Hz) in ms?

« HF: High-frequency power (0.15-0.40 Hz) in ms?

o LF/HF Ratio: Ratio of LF to HF power, proposed sympathovagal balance index

2.3.3 Nonlinear Feature
e SampEn: Sample entropy computed with embedding dimension m=2 and tolerance
r=0.2xSD(NN) (Richman and Moorman, 2000)
2.4 Statistical Analysis
2.4.1 Normality Testing

The Shapiro-Wilk test assessed normality of HRV feature distributions within each condition.
Given non-normal distributions in multiple features, non-parametric statistical methods were
employed.

2.4.2 Between-Condition Comparisons

Mann-Whitney U tests compared HRV features between Baseline and Stress conditions. To con-
trol family-wise error rate, p-values were adjusted using the Benjamini-Hochberg false discovery
rate (FDR) procedure with o« = 0.05.

2.4.3 Effect Size Estimation

Cohen’s d effect sizes were computed as:

o |/$Baseline - /«LStress|
d= (1)
Opooled

Effect sizes were interpreted according to conventional thresholds: small (d > 0.20), medium
(d > 0.50), and large (d > 0.80).
2.5 Machine Learning Classification
2.5.1 Algorithms Evaluated

Four classification algorithms were implemented and compared:

1. XGBoost: Gradient boosting with 100 estimators, max depth 4, learning rate 0.1 (Chen
and Guestrin, 2016)

2. Random Forest: Ensemble of 100 decision trees with Gini impurity criterion (Breiman,
2001)

3. Support Vector Machine (SVM): Radial basis function kernel with regularization
parameter C=1.0

4. Logistic Regression: L2-regularized logistic regression with regularization strength
C=1.0
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2.5.2 Leave-One-Subject-Out Cross-Validation

To rigorously assess subject-independent generalizability, Leave-One-Subject-Out (LOSO) cross-
validation was employed. In each fold, data from one subject was held out for testing while
the remaining 14 subjects’ data were used for training. This procedure ensures that classifi-
cation performance reflects true generalization to unseen individuals rather than overfitting to
subject-specific patterns.

2.5.3 Feature Scaling

All features were standardized (z-score normalization) using parameters computed from training
data only, preventing information leakage during cross-validation.

2.5.4 Performance Metrics

Classification performance was evaluated using:
e Accuracy: Overall proportion of correct classifications

e Precision: Proportion of predicted stress samples that were true stress

Recall (Sensitivity): Proportion of true stress samples correctly identified
¢ F1-Score: Harmonic mean of precision and recall

e ROC-AUC: Area under the receiver operating characteristic curve

2.5.5 Feature Importance Analysis

For tree-based methods (XGBoost, Random Forest), feature importance scores were extracted
based on information gain contributions. SHAP (SHapley Additive exPlanations) values were
computed for interpretable model explanation.

2.6 Software and Reproducibility

All analyses were implemented in Python 3.11 using established scientific computing libraries
including NumPy, SciPy, pandas, scikit-learn (Makowski et al., 2021), and XGBoost. Signal
processing utilized the NeuroKit2 package (Makowski et al., 2021). Complete analysis code and
intermediate results are available upon request to support reproducibility.

3 Results

3.1 Dataset Characteristics

The final dataset comprised 168 60-second HRV windows: 84 from Baseline conditions and
84 from Stress conditions, reflecting balanced class distributions across 15 subjects. Signal
quality assessment confirmed adequate ECG fidelity for reliable R-peak detection and HRV
computation.

3.2 Signal Preprocessing Quality

Figure 2 illustrates the preprocessing pipeline’s effectiveness in enhancing signal quality. Band-
pass filtering (0.5-40 Hz) successfully attenuated baseline drift and high-frequency noise while
preserving QRS complex morphology essential for accurate R-peak detection. The mean signal-
to-noise ratio improvement was 10.81 dB, confirming robust preprocessing.
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Figure 2: ECG Signal Preprocessing Quality. Comparison of raw ECG signal (top) and
bandpass-filtered signal (bottom) demonstrating effective noise reduction and baseline drift
removal while preserving QRS complex morphology. The filtering achieved an average SNR
improvement of 10.81 dB across subjects.

3.3 HRYV Feature Distributions

Figure 3 presents the distributions of all eight HRV features stratified by experimental condition.
Visual inspection reveals clear separation between Baseline and Stress conditions for multiple
features, particularly pNN50, Meanyn, and SampEn.
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HRV Feature Distributions: Baseline vs. Stress
(*: p<0.05, **: p<0.01, ***: p<0.001, n.s.: not significant, after Bonferroni correction)
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Figure 3: Distribution of HRV Features by Condition. Violin plots showing the distri-
bution of eight HRV features during Baseline (blue) and Stress (orange) conditions. Features
marked with asterisks exhibited statistically significant differences after FDR correction (***p <
0.001, *p < 0.01, *p < 0.05). Note the pronounced separation in pNN50, Meanny, and sample
entropy (SampEn).

3.4 Statistical Comparison Between Conditions

Table 1 summarizes the statistical comparison of HRV features between Baseline and Stress
conditions. All eight features demonstrated statistically significant differences (FDR-corrected
p < 0.05), confirming the validity of HRV as a stress-sensitive biomarker class.

Table 1: Statistical Comparison of HRV Features Between Baseline and Stress Con-
ditions.

Feature Baseline Baseline Stress Stress p-value Cohen’sd Effect
Mean SD Mean SD (FDR) Size
Meannyn (ms) 624.09 90.38 520.54  33.33  <0.001 1.52 Large
SDNN (1ms) 248.05 173.95 187.71 14754  <0.001 0.37 Small
RMSSD (ms) 322.69 190.26 25742  216.73  <0.001 0.32 Small
pNN50 (%) 75.88 6.14 52.88 7.61 <0.001 3.33 Large
LF (ms?) 81,624 250,690 38,465 85,562  <0.001 0.23 Small
HF (ms?) 23,691 30,082 35,446 60,315 0.033 0.25 Small
LF/HF Ratio 1.53 2.53 0.61 0.48 <0.001 0.51 Medium
SampEn 1.55 0.41 1.23 0.51 <0.001 0.69 Medium

Note: SD = standard deviation; FDR = false discovery rate correction; Effect size interpretation: small
(d > 0.20), medium (d > 0.50), large (d > 0.80).
3.4.1 Effect Size Interpretation
The largest effect sizes were observed for:

o pNN50 (d = 3.33, large): 23% absolute reduction during stress, reflecting pronounced
parasympathetic withdrawal

o Meannyn (d = 1.52, large): 103.6 ms decrease (16.6%) during stress, indicating elevated
heart rate
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o SampEn (d = 0.69, medium): Reduced complexity during stress suggests less adaptive
cardiac dynamics

o« LF/HF Ratio (d = 0.51, medium): Unexpectedly decreased during stress, potentially
due to overall spectral power redistribution

3.5 Feature Correlations

Figure 4 displays the correlation matrix among HRV features. Strong positive correlations were
observed between time-domain variability metrics (SDNN, RMSSD: r = 0.95) and between
Meanny and parasympathetic markers. These correlations reflect the shared physiological sub-
strates underlying different HRV metrics while highlighting the complementary information
provided by nonlinear entropy measures.

HRV Feature Correlation Matrix

Mean_NN

SDNN

u- ..

SDNN RMSSD pNNSO LF_| HF Ratio SampEn

SampEn LF_| HF Ratio

Mean NN

Figure 4: Correlation Matrix of HRV Features. Pearson correlation coefficients between
all pairs of HRV features. Strong positive correlations exist between time-domain variability
metrics (SDNN, RMSSD, pNN50), while sample entropy (SampEn) shows more independent
information.

3.6 Classification Performance
3.6.1 Model Comparison

Table 2 presents the classification performance of all four algorithms evaluated using LOSO
cross-validation. Random Forest achieved the highest overall performance, followed closely by
SVM, Logistic Regression, and XGBoost.

10
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Table 2:
Cross-Validation.

Classification Performance Comparison Using Leave-One-Subject-Out

Model Accuracy Precision Recall F1-Score ROC-AUC
Random Forest 98.81% 98.85% 98.81% 0.988 1.000
SVM 98.21% 98.85% 97.62% 0.982 1.000
Logistic Regression 97.62% 97.70% 97.62% 0.976 1.000
XGBoost 97.02% 95.62% 98.81% 0.971 0.997

Note: Results represent mean performance across 15 LOSO folds. Best values highlighted in bold.

3.6.2 ROC Curve Analysis

Figure 5 presents the receiver operating characteristic curves for all classifiers. All models
demonstrated exceptional discriminative ability with ROC-AUC values approaching or equaling
1.0, indicating near-perfect separation between stress and baseline classes.
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Figure 5: Receiver Operating Characteristic (ROC) Curves. ROC curves for XGBoost
classifier demonstrating excellent discriminative performance (AUC = 0.997). All evaluated
classifiers achieved ROC-AUC > 0.997, indicating robust stress/baseline discrimination.

3.6.3 Confusion Matrix

Figure 6 shows the confusion matrix for the XGBoost classifier, revealing only 5 misclassifica-
tions out of 168 samples (97.02% accuracy). The model exhibited slightly higher recall (98.81%)
than precision (95.62%), indicating a tendency toward stress detection sensitivity.

11
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Confusion Matrix (LOSO Cross-Validation)
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Figure 6: Confusion Matrix for XGBoost Classifier. The model correctly classified 81/84
baseline samples (96.4%) and 82/84 stress samples (97.6%), with only 5 total misclassifications
across 168 samples.

3.6.4 Model Performance Comparison

Figure 7 provides a visual comparison of all classifier metrics. While performance differences
were relatively small given the high overall accuracy, Random Forest demonstrated the most
balanced performance across all metrics.
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Figure 7: Comparative Performance of Machine Learning Classifiers. Bar chart com-
paring accuracy, Fl-score, and ROC-AUC across all four classifiers. Random Forest achieved
the highest overall performance, though all models exceeded 97% accuracy.

3.7 Feature Importance Analysis

Figure 8 presents the feature importance rankings derived from the XGBoost classifier. pNN50
emerged as the dominant predictor, contributing 78.6% of the total importance, followed by
Meanny (11.7%) and RMSSD (5.7%). Notably, frequency-domain features (LF, LF/HF ratio)
and sample entropy contributed minimally to the final classification, suggesting that time-
domain parasympathetic markers are sufficient for accurate stress detection.

12
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Feature Importance (Averaged Across LOSO Folds)
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Figure 8: Feature Importance Ranking from XGBoost Classifier. pNN50 emerged as
the dominant predictor (78.6% importance), followed by Meanxy (11.7%) and RMSSD (5.7%).
Time-domain parasympathetic markers drive classification performance.

3.8 Error Analysis

Table 3 characterizes the misclassified samples across all models. Error analysis revealed that
7 samples were misclassified by at least one model, with 2 samples representing particularly
challenging cases misclassified by all 4 classifiers. These “hard samples” exhibited HRV pro-
files intermediate between typical baseline and stress patterns, potentially reflecting individual
differences in stress responsivity or transitional physiological states.

Table 3: Error Analysis: Characteristics of Misclassified Samples.

Subject True Label pNN50 Meannny SampEn Models Missed

S2 Stress 67.29%  550.3 ms 1.78 All 4

S2 Stress 69.44%  544.1 ms 1.82 2 (SVM, LR)
S3 Baseline 66.67% 547.5ms  1.52 2 (LR, XCB)
S4 Baseline 78.70%  546.2 ms 2.00 2 (RF, XGB)
S4 Baseline 66.98%  558.6 ms 1.81 2 (SVM, LR)
S4 Baseline 64.04%  664.2 ms 0.77 1 (XGB)
S4 Baseline 81.31%  551.1 ms 1.81 1 (XGB)

Note: LR = Logistic Regression, RF = Random Forest, XGB = XGBoost. Hard samples exhibit intermediate
pNN50 values (60-70%) between typical baseline (~76%) and stress (~53%) levels.

4 Discussion

This study demonstrated that HRV features extracted from ECG recordings reliably distinguish
stress from rest states with high accuracy (97-99%) using machine learning classification. All
eight HRV metrics exhibited statistically significant changes during stress, with pNN50 emerging
as the dominant discriminative feature. These findings have important implications for wearable
stress monitoring applications and personalized health interventions.

13
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4.1 Physiological Interpretation of HRV Changes

The observed HRV alterations during stress align with established autonomic nervous system
physiology (Agorastos et al., 2023; Kim et al., 2018). The pronounced reduction in pNN50
(75.9% — 52.9%) reflects robust parasympathetic withdrawal during stress, consistent with the
well-documented vagal inhibition that accompanies sympathetic activation. This 23-percentage-
point decrease represents a large effect size (d = 3.33), underscoring pNN50’s exceptional sen-
sitivity as a stress biomarker.

The 16.6% decrease in Meannyn (624.1 — 520.5 ms) corresponds to an increase in mean
heart rate from approximately 96 to 115 beats per minute, reflecting the chronotropic effects
of sympathetic activation and vagal withdrawal characteristic of stress-induced fight-or-flight
responses (Thayer et al., 2012).

Interestingly, the LF /HF ratio decreased during stress rather than increasing as traditionally
expected. While the LF/HF ratio has been proposed as a sympathovagal balance index, its
interpretation remains controversial (Quintana and Heathers, 2014). The observed pattern may
reflect: (1) greater relative HF power reduction compared to LF during stress, (2) respiratory
changes during the TSST speech task affecting HF power, or (3) limitations of the LF /HF ratio
as a sympathovagal balance measure in acute stress paradigms.

Sample entropy reduction during stress (1.55 — 1.23) indicates less complex, more pre-
dictable cardiac dynamics. This finding aligns with the hypothesis that adaptive physiological
systems exhibit higher complexity under healthy resting conditions, with stress-induced simpli-
fication reflecting reduced regulatory flexibility (Richman and Moorman, 2000).

4.2 Feature Importance and Model Interpretability

The dominance of pNN50 in feature importance rankings (78.6%) provides clinically meaningful
interpretability. Unlike “black box” models relying on opaque feature combinations, stress
classification in the present study primarily reflects a single physiologically interpretable metric:
vagal tone as indexed by beat-to-beat variability. This interpretability enhances clinical trust
and facilitates mechanistic understanding of model predictions.

The minimal contribution of frequency-domain features (LF, HF, LF/HF ratio) and sample
entropy to classification performance suggests that elaborate spectral or nonlinear analyses may
be unnecessary for practical stress detection applications. Simple time-domain metrics, particu-
larly pNN50 and Meanyny, appear sufficient for accurate discrimination, potentially simplifying
real-time wearable implementations.

4.3 Comparison with Published Benchmarks

The classification accuracies achieved in this study (97-99%) compare favorably with published
benchmarks on the WESAD dataset. Schmidt et al. (2018) reported 93% binary stress/non-
stress accuracy using LDA with handcrafted features from multiple modalities. Recent deep
learning approaches have achieved even higher accuracies (99+%), though often using multi-
modal fusion or raw signal inputs (Oliver and Dakshit, 2025; de Santos Sierra et al., 2021).

Our results demonstrate that traditional machine learning classifiers with carefully engi-
neered HRV features can achieve near-ceiling performance on this benchmark, potentially ob-
viating the need for more complex deep learning architectures in HRV-based stress detection.
This finding has practical implications for resource-constrained wearable devices where compu-
tational efficiency is paramount.

The Leave-One-Subject-Out validation methodology provides more rigorous generalizability
assessment than random train-test splits, as it ensures complete subject independence between
training and evaluation sets. The sustained high performance under LOSO validation suggests

14
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that learned stress signatures generalize across individuals rather than reflecting subject-specific
idiosyncrasies.

4.4 Implications for Wearable Health Applications

The findings support the feasibility of wearable HRV-based stress monitoring systems for several
applications:

Mental Health Monitoring: Continuous HRV tracking could enable early detection of
chronic stress accumulation, prompting timely interventions before clinical symptom manifes-
tation (Sheridan et al., 2021; Can et al., 2019).

Workplace Wellness: Real-time stress alerts in occupational settings could inform break
scheduling, task allocation, and workload management (Gjoreski et al., 2017; Johnson et al.,
2024).

Athletic Performance: HRV-based training load monitoring already informs elite athletic
preparation; enhanced stress detection could further optimize recovery and prevent overtraining
(Giannakakis et al., 2022).

Clinical Biofeedback: Integration with biofeedback interventions could provide closed-
loop systems for stress-responsive relaxation guidance (de Santos Sierra et al., 2021).

The dominance of simple time-domain features suggests that even consumer-grade wear-
ables with basic heart rate monitoring capabilities could potentially implement stress detection
algorithms, though signal quality differences between clinical ECG and consumer PPG devices
warrant further investigation.

4.5 Limitations

Several limitations should be acknowledged:

Sample Size: The WESAD dataset comprises only 15 subjects, limiting statistical power
and demographic generalizability. Validation on larger, more diverse cohorts is essential before
clinical deployment.

Laboratory Setting: Stress was induced via the TSST, a standardized but artificial labo-
ratory stressor. Real-world stressors (work deadlines, interpersonal conflicts, financial concerns)
may elicit different physiological profiles (Oliver and Dakshit, 2024).

Acute Stress Focus: The present analysis focused on acute stress episodes rather than
chronic stress accumulation. Long-term monitoring studies are needed to assess HRV patterns
in chronic stress conditions.

Single Modality: Only ECG-derived HRV was analyzed. Multimodal approaches incor-
porating electrodermal activity, respiration, and movement data may enhance accuracy and
robustness.

Motion Artifacts: The chest-worn RespiBAN device provided high-quality ECG largely
free from motion artifacts. Consumer wrist-worn devices may experience greater artifact con-
tamination requiring additional preprocessing.

4.6 Future Directions
Future research should address:

1. Validation on larger, demographically diverse cohorts including clinical populations
2. Ecological validation using free-living data collection over extended periods
3. Cross-dataset generalization testing (e.g., WESAD — SWELL-KW, ForDigitStress)

4. Consumer wearable feasibility assessment comparing PPG-derived to ECG-derived HRV
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5. Integration with contextual information (activity, location, time-of-day) for enhanced ac-
curacy

6. Multi-class stress intensity classification (mild/moderate/severe)

7. Longitudinal studies tracking HRV-stress relationships over months to years

5 Conclusion

This study demonstrated that HRV features—particularly the parasympathetic marker pNN50—
provide robust biomarkers for distinguishing physiological stress from rest states. Machine
learning classifiers achieved 97-99% accuracy using subject-independent Leave-One-Subject-
Out cross-validation, with Random Forest achieving the highest performance (98.81% accuracy,
F1 = 0.988, ROC-AUC = 1.000).

All eight HRV features exhibited statistically significant stress-induced changes (p < 0.05,
FDR-corrected), with pNN50 showing the largest effect size (Cohen’s d = 3.33). Feature im-
portance analysis revealed that time-domain parasympathetic metrics, primarily pNN50 and
Meanyy, drive classification performance, suggesting that computationally simple algorithms
focusing on these features may be sufficient for practical wearable implementations.

These findings support the potential of HRV-based stress detection for wearable health
monitoring applications, though validation on larger cohorts and real-world settings remains
essential for clinical translation. The interpretability of pNN50 as the dominant predictive
feature enhances clinical utility and mechanistic understanding of algorithmic stress detection.
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