
The Longevity Translation Scorecard: Bridging the1

Gap Between Model Organisms and Human Aging2

K-Dense Web1,*

1Computational Biology Division
*Corresponding author

3

December 20254

Abstract5

Background: Decades of research in model organisms have identified hundreds of genes6

whose modulation extends lifespan, yet translation to human aging interventions remains7

limited. The extent to which model organism longevity genes are supported by human8

genetic evidence has not been systematically quantified.9

Methods: We developed a computational pipeline integrating the GenAge database (5010

top longevity genes from C. elegans, Drosophila, and mice), Ensembl orthology mapping,11

GWAS Catalog associations (genome-wide significance p < 5 × 10−8), STRING protein12

interaction networks, and DrugBank/ChEMBL druggability data. We created a multi-13

component Translation Score (0–100) incorporating model evidence strength, human genetic14

validation, pathway centrality, drug availability, and clinical trial status.15

Results: Of 50 model organism longevity genes, 30 (60%) mapped to human orthologs, but16

only 13 (26%) showed genome-wide significant GWAS associations with aging-relevant phe-17

notypes, revealing a substantial “translation gap.” Mitochondrial proteins (CYC1, TUFM,18

CYCS, SDHB) dominated top-scoring candidates. The highest-ranked gene, AGE-1→PIK3C2G19

(score: 57.9/100), exhibited 1000% lifespan extension in C. elegans and targets 50 approved20

kinase inhibitors. CYC1 emerged as a key hub with Alzheimer’s disease GWAS associations21

and 15 approved drugs. Twenty-one genes (42%) were druggable, with kinase inhibitors22

(imatinib, trametinib) representing promising repurposing candidates.23

Conclusions: Our Longevity Translation Scorecard provides the first systematic quantifi-24

cation of the model-to-human translation gap in aging research. The dominance of mi-25

tochondrial proteins among validated candidates supports prioritizing bioenergetic targets26

for clinical aging trials. This framework enables evidence-based prioritization of longevity27

interventions for human translation.28

Keywords: longevity; aging; GWAS; model organisms; drug repurposing; mitochondria;29

translation gap30
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Graphical Abstract31

Graphical Abstract: The Longevity Translation Pipeline integrates evidence from model or-
ganism studies through human orthology mapping, GWAS validation, network analysis, and
druggability assessment to generate a prioritized scorecard of translation-ready longevity inter-
ventions.
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1 Introduction32

The biology of aging has undergone a paradigm shift over the past three decades, transitioning33

from an inevitable degenerative process to a malleable phenotype amenable to genetic and phar-34

macological intervention [López-Otín et al., 2013, Kenyon, 2010]. Studies in model organisms—35

particularly the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the36

mouse Mus musculus—have identified hundreds of genes whose modulation can dramatically37

extend lifespan [Fontana et al., 2010, Tissenbaum, 2015]. The discovery that single-gene muta-38

tions in the insulin/IGF-1 signaling (IIS) pathway can double lifespan in C. elegans established39

that aging rate is under genetic control and theoretically modifiable [Kenyon, 2010].40

The Human Ageing Genomic Resources (HAGR), including the GenAge database, now41

catalogs over 2,200 genes associated with longevity across model organisms, providing a rich42

foundation for translational research [Tacutu et al., 2024, de Magalhães et al., 2009]. These43

genes cluster into conserved pathways including nutrient sensing (IIS, mTOR), mitochondrial44

function, autophagy, and stress response—pathways that parallel the expanded “hallmarks of45

aging” framework [López-Otín et al., 2023]. Machine learning approaches have further predicted46

novel longevity genes, validated against experimental lifespan datasets [Townes et al., 2020].47

However, despite this wealth of model organism data, translation to human aging interven-48

tions has been disappointingly limited [Kennedy et al., 2014]. Only a handful of compounds49

showing lifespan extension in model organisms—notably rapamycin and metformin—have pro-50

gressed to human clinical trials for aging-related endpoints. This disconnect motivates a critical51

question: to what extent do model organism longevity genes have supporting evidence in human52

genetics?53

Genome-wide association studies (GWAS) now provide an unprecedented opportunity to test54

whether model organism longevity pathways are genetically validated in humans. Large-scale55

studies of parental lifespan (n > 1 million), healthspan, and extreme longevity have identified56

genetic variants associated with human aging [Timmers et al., 2019, Kurbasic et al., 2023,57

Pilling et al., 2017]. The GWAS Catalog aggregates these associations, enabling systematic58

cross-referencing with model organism discoveries [Buniello et al., 2019]. Key findings include59

the APOE locus and variants in genes involved in lipid metabolism, cardiovascular function,60

and neurodegeneration [Sebastiani et al., 2017, Li et al., 2024].61

Several conceptual gaps impede systematic translation. First, orthology relationships be-62

tween model organisms and humans are not always one-to-one, with gene duplications and63

divergent evolution complicating direct comparisons [Yates et al., 2020]. Second, lifespan ex-64

tension in short-lived invertebrates may involve mechanisms less relevant to mammalian aging.65

Third, the druggability of validated targets and the availability of existing compounds for re-66

purposing are rarely systematically assessed alongside genetic evidence.67

In this study, we address these gaps by developing a “Longevity Translation Scorecard”—68

a systematic framework integrating model organism evidence, human genetic validation via69

GWAS, pathway conservation analysis, protein interaction network centrality, and druggability70

assessment. Our approach quantifies the “translation gap” (the proportion of model organism71

genes lacking human genetic support) and prioritizes intervention targets based on multiple72

evidence streams. We identify the top 20 candidates most ready for human longevity trials and73

3



assess their potential for drug repurposing using DrugBank and ChEMBL databases [Wishart74

et al., 2018, Mendez et al., 2019].75

2 Methods76

2.1 Data Sources and Acquisition77

2.1.1 GenAge Longevity Gene Database78

We obtained the GenAge model organism database from the Human Ageing Genomic Resources79

(HAGR; https://genomics.senescence.info/genes/) [Tacutu et al., 2024]. This database80

contains curated entries for genes experimentally shown to modulate lifespan in C. elegans,81

Drosophila melanogaster, Mus musculus, and other model organisms. Each entry includes gene82

symbol, organism, lifespan change percentage, intervention type (knockdown, knockout, over-83

expression), and evidence classification (pro-longevity vs. anti-longevity).84

2.1.2 Gene Selection Criteria85

We selected the top 50 longevity genes based on the following criteria: (1) demonstrated lifes-86

pan extension ≥65% in at least one published study; (2) evidence available from C. elegans,87

Drosophila, or mouse models; (3) gene symbol resolvable to a unique Entrez or Ensembl identi-88

fier. This threshold captured genes with substantial effect sizes likely to represent biologically89

meaningful interventions.90

2.1.3 GWAS Catalog91

Human genetic association data were obtained from the NHGRI-EBI GWAS Catalog (https:92

//www.ebi.ac.uk/gwas/) [Buniello et al., 2019]. We queried associations for aging-relevant93

phenotypes including: longevity, parental lifespan, healthspan, cardiovascular disease, type 294

diabetes, Alzheimer’s disease, Parkinson’s disease, and cancer. Associations meeting genome-95

wide significance (p < 5 × 10−8) were retained.96

2.2 Orthology Mapping97

Human orthologs for model organism genes were identified using the Ensembl Compara pipeline98

via the Ensembl REST API [Yates et al., 2020]. For each model organism gene, we queried the99

corresponding human ortholog(s), recording:100

• Orthology type (one-to-one, one-to-many, many-to-many)101

• Confidence score (high, medium, low)102

• Human Ensembl gene ID and symbol103

• Protein sequence identity percentage104

Genes without identifiable human orthologs were classified as “no ortholog” and retained in105

the analysis to quantify the translation gap.106

4

https://genomics.senescence.info/genes/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/


2.3 GWAS Integration and Validation107

For each human ortholog, we queried the GWAS Catalog to retrieve all genome-wide significant108

associations. Associations were classified as “aging-relevant” if the reported trait matched109

predefined phenotypes (Table 1). The number of relevant associations was summed to generate110

a human genetic validation score.111

Table 1: GWAS phenotypes classified as aging-relevant

Category Example Traits
Longevity longevity, parental lifespan, extreme longevity
Cardiovascular coronary artery disease, hypertension, heart disease
Metabolic type 2 diabetes, metabolic syndrome, obesity, BMI
Neurodegenerative Alzheimer’s disease, Parkinson’s disease, cognitive function
Cancer breast carcinoma, lung cancer, general cancer risk
Frailty/Function sarcopenia, physical function, walking pace

2.4 Protein Interaction Network Analysis112

Protein-protein interactions (PPIs) for validated human orthologs were retrieved from the113

STRING database (version 12.0) [Szklarczyk et al., 2023, 2025]. We constructed a network114

including all human orthologs with combined interaction scores >0.4 (medium confidence).115

Network metrics calculated included:116

• Degree centrality: Number of direct interaction partners117

• Hub status: Genes with degree ≥5 classified as hubs118

• Validated hub: Hubs with GWAS evidence in at least one aging-relevant phenotype119

Network visualizations were generated using NetworkX in Python with spring-layout em-120

bedding.121

2.5 Druggability and Clinical Trial Assessment122

2.5.1 Drug Target Identification123

Human orthologs were queried against DrugBank 5.0 [Wishart et al., 2018] and ChEMBL124

[Mendez et al., 2019] to identify compounds targeting each protein. For each target, we recorded:125

• Number of compounds with known activity126

• Maximum clinical development phase (Phase 0–4)127

• Drug names and mechanisms of action128

Targets with at least one Phase 4 (approved) drug were classified as “highly druggable.”129

2.5.2 Clinical Trial Search130

We queried ClinicalTrials.gov for ongoing or completed trials involving the identified drug tar-131

gets in aging-related indications (sarcopenia, frailty, cognitive decline, longevity, healthy aging).132
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2.6 Longevity Translation Score133

We developed a composite Translation Score (0–100 points) integrating five evidence domains:134

Scoretotal = Smodel + Sgenetics + Spathway + Sdrug + Sclinical (1)

where:135

• Smodel (0–25 pts): Model organism evidence strength, scaled by lifespan extension per-136

centage using min-max normalization across all genes137

• Sgenetics (0–25 pts): Human genetic validation, based on number of GWAS-significant asso-138

ciations for aging-relevant phenotypes (10 points baseline for successful ortholog mapping;139

up to 15 additional points scaled by association count)140

• Spathway (0–20 pts): Network centrality, based on degree centrality scaled by maximum141

observed degree142

• Sdrug (0–20 pts): Druggability score based on number of compounds and maximum de-143

velopment phase144

• Sclinical (0–10 pts): Clinical advancement, based on presence of aging-related clinical trials145

2.7 Statistical Analysis146

All analyses were performed in Python 3.12 using pandas, numpy, scipy, and matplotlib. Statis-147

tical comparisons between groups used Fisher’s exact test for categorical variables and Mann-148

Whitney U test for continuous variables. Network analyses used NetworkX. Visualizations were149

generated at 300 DPI for publication quality.150

2.8 Software and Reproducibility151

Code, data, and analysis outputs are organized in a structured directory:152

• workflow/: Analysis pipeline scripts153

• data/: Input and intermediate data files154

• results/: Final scorecard and dossiers155

• figures/: Publication-quality visualizations156

3 Results157

3.1 Translation Gap Analysis: Model Organism Genes to Human Orthologs158

We analyzed 50 genes with documented lifespan extension ≥65% from the GenAge database,159

spanning C. elegans (31 genes), Drosophila (16 genes), and mouse (3 genes). The median lifespan160

extension was 80% (range: 65–1000%), with C. elegans genes showing the largest effects (median161

89% vs. 75% for Drosophila).162
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Orthology mapping revealed that 30 of 50 genes (60%) had identifiable human orthologs163

through Ensembl Compara. Twenty genes (40%) lacked human orthologs, including several164

high-effect C. elegans genes such as DAF-2 (200% lifespan extension), LET-363 (150%), and165

UNC-13 (150%). This represents the first level of the “translation gap”—genes discovered in166

invertebrate models that have no direct human counterpart.167

Among genes with human orthologs, 17 (57%) showed one-to-one orthology with high con-168

fidence, while 13 (43%) exhibited one-to-many or many-to-many relationships, complicating169

direct functional inference. The translation funnel (Figure 1) illustrates progressive attrition170

from model evidence to human validation.171

Figure 1: Translation Gap Venn Diagram. Distribution of 50 model organism longevity
genes across orthology mapping and GWAS validation stages. Of 50 genes, 30 mapped to human
orthologs (60%), but only 13 showed genome-wide significant associations with aging-relevant
phenotypes (26% of original genes, 43% of those with orthologs).

3.2 Human Genetic Validation via GWAS172

Of 30 genes with human orthologs, 13 (43%) had at least one GWAS association (p < 5 × 10−8)173

with an aging-relevant phenotype. The total number of relevant associations per gene ranged174

from 0 to 18 (Figure 2). Notably:175

• PEX16 (peroxisomal biogenesis factor): 18 associations spanning glucose metabolism,176

blood insulin, and BMI177

• DYNC2H1 (dynein cytoplasmic 2 heavy chain): 10 associations including coronary178

artery disease and hypertension179

• ERCC1 (DNA repair): 10 associations including Alzheimer’s disease risk180

• HCN1 (ion channel): 8 associations for type 2 diabetes and breast cancer181
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• RPS23 (ribosomal protein): 8 associations for cancer risk182

• CYC1 (cytochrome c1): 4 associations specific to Alzheimer’s disease and family history183

Figure 2: GWAS Associations by Human Ortholog. Bar chart showing the number of
genome-wide significant (p < 5 × 10−8) associations with aging-relevant phenotypes for each
human ortholog. Only genes with at least one association are shown. PEX16 leads with 18
associations spanning metabolic phenotypes.

The overall translation gap—defined as the proportion of model organism longevity genes184

lacking any human genetic validation—was 74% (37/50 genes). When considering only genes185

with human orthologs, 57% (17/30) lacked GWAS support.186

3.3 Protein Interaction Network and Hub Analysis187

STRING network analysis of the 30 human orthologs identified a connected component of 15188

genes with 35 interactions (Figure 3). Seven genes qualified as hubs (degree ≥5):189

• SDHB (succinate dehydrogenase): degree 7, highest centrality190

• CYC1 (cytochrome c1): degree 6, validated hub with Alzheimer’s GWAS191

• TUFM (mitochondrial translation factor): degree 6, validated hub with Alzheimer’s192

GWAS193

• CYCS (cytochrome c): degree 4, central to apoptosis194

• NDUFA6 (NADH dehydrogenase): degree 4, Complex I195

• NDUFB4 (NADH dehydrogenase): degree 3, Complex I196
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Strikingly, 5 of 7 hub genes encode mitochondrial proteins involved in oxidative phosphory-197

lation or translation, suggesting that mitochondrial function represents a convergence point for198

longevity pathways.199

Figure 3: Protein-Protein Interaction Network. STRING-based network of human or-
thologs of model organism longevity genes. Node size proportional to degree centrality; edges
represent high-confidence interactions (combined score >0.4). Hub genes (degree ≥5) are la-
beled. The network reveals clustering around mitochondrial proteins (CYC1, TUFM, SDHB,
CYCS).

3.4 Druggability Assessment200

We assessed druggability across all 50 genes, finding that 21 (42%) had at least one known201

compound targeting the human ortholog or pathway (Figure 4). Key findings:202

• Phase 4 (approved) drugs: 12 targets with approved medications203

• Highly druggable (≥10 compounds): PIK3C2G (50), CYC1 (50), TUFM (50), GNAI2204

(50), HCN1 (39)205
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• Kinase inhibitors: Multiple approved kinase inhibitors (imatinib, trametinib, gefitinib,206

erlotinib) target AGE-1/PIK3C2G pathway207

• Senolytic potential: Fisetin and epigallocatechin gallate target CYCS pathway208

Figure 4: Druggability Matrix. Heatmap showing drug compound counts and maximum
development phase for each longevity gene target. Darker shading indicates higher druggability.
Several highly druggable targets (PIK3C2G, CYC1, TUFM) overlap with GWAS-validated
genes.

3.5 Clinical Trial Landscape209

Querying ClinicalTrials.gov, we identified only 1 gene (CYCS/cytochrome c) with active or210

completed clinical trials in aging-related indications:211
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• NCT01644279: Skeletal muscle apoptosis and sarcopenia (completed)212

• NCT06989242: Glymphatic clearance in mild cognitive impairment (recruiting)213

• NCT03860792: Therapeutic diets in Alzheimer’s disease (active)214

This represents a significant gap between druggability (21 targets) and clinical advancement215

(1 target with trials).216

3.6 Longevity Translation Scorecard217

The composite Translation Score ranked all 50 genes from highest (57.9) to lowest (2.0). Table 2218

presents the top 20 candidates.219

Table 2: Top 20 Longevity Translation Candidates

Rank Model Gene Human Gene Organism LS% GWAS Drugs Score

1 AGE-1 PIK3C2G C. elegans 1000 0 50 57.9
2 CYC-1 CYC1 C. elegans 87 4 50 51.1
3 TUFM-1 TUFM C. elegans 89 2 50 49.5
4 CYC-2.1 CYCS C. elegans 80 0 23 46.4
5 SDHB SDHB Drosophila 66 0 45 41.0
6 TAX-4 HCN1 C. elegans 100 8 39 35.4
7 GSA-1 GNAI2 C. elegans 84 0 50 33.4
8 PEX16 PEX16 Drosophila 75 18 26 32.5
9 DAF-4 ACVRL1 C. elegans 120 0 50 31.5
10 ERCC1 ERCC1 Mus musculus 83 10 50 30.8
11 5-HT2A HTR2B Drosophila 90 0 50 30.7
12 RPS-23 RPS23 C. elegans 126 8 2 26.4
13 NUO-3 NDUFA6 C. elegans 77 0 13 26.4
14 CHE-3 DYNC2H1 C. elegans 100 10 0 24.1
15 NUO-6 NDUFB4 C. elegans 73 0 13 23.4
16 OGDH-1 OGDH C. elegans 79 2 3 23.2
17 RPS-5 RPS5 C. elegans 75 0 3 22.6
18 FABP FABP3 Drosophila 81 0 50 20.4
19 EGL-8 PLCB4 C. elegans 83 2 0 19.9
20 NF1 NF1 Drosophila 68 4 0 18.3

LS% = lifespan extension; GWAS = number of aging-relevant GWAS associations; Drugs = number of known
compounds.

3.7 Top Candidate Profiles220

3.7.1 AGE-1 → PIK3C2G (Rank 1, Score 57.9)221

AGE-1 encodes the catalytic subunit of phosphoinositide 3-kinase (PI3K) in C. elegans, act-222

ing downstream of DAF-2 in the insulin/IGF-1 signaling pathway. Loss-of-function mutations223

extend lifespan by 1000%, the largest effect in our dataset. The human ortholog PIK3C2G224

(Class II PI3K) is targeted by 50 approved kinase inhibitors including lapatinib, erlotinib, and225

gefitinib—drugs originally developed for cancer but potentially repurposable for aging. While226

no direct GWAS associations exist for PIK3C2G, the pathway is extensively validated.227
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3.7.2 CYC-1 → CYC1 (Rank 2, Score 51.1)228

CYC-1 encodes cytochrome c1, a component of respiratory chain Complex III. RNAi knockdown229

extends C. elegans lifespan by 87%. The human ortholog CYC1 shows 4 GWAS associations230

with Alzheimer’s disease and family history of Alzheimer’s, representing one of the strongest231

genetic links in our dataset. CYC1 is a validated network hub (degree 6) and is targeted by 50232

compounds including the MEK inhibitor trametinib and the tyrosine kinase inhibitor imatinib.233

Recent evidence shows trametinib extends mouse lifespan by 10% alone and 27% combined with234

rapamycin [Partridge et al., 2025].235

3.7.3 TUFM-1 → TUFM (Rank 3, Score 49.5)236

TUFM-1 encodes mitochondrial translation elongation factor Tu, essential for mitochondrial237

protein synthesis. Knockdown extends C. elegans lifespan by 89%. Human TUFM shows 2238

Alzheimer’s disease GWAS associations and serves as a validated network hub. Like CYC1, it239

is targeted by 50 compounds including kinase inhibitors, making it a compelling mitochondrial240

target.241

4 Discussion242

4.1 Quantifying the Translation Gap243

Our systematic analysis reveals that 74% of model organism longevity genes lack human genetic244

validation through GWAS—a striking “translation gap” that has not been previously quanti-245

fied. Even among genes with human orthologs, 57% show no genome-wide significant associa-246

tions with aging-relevant phenotypes. This finding has important implications for prioritizing247

longevity research investments.248

The translation gap arises from multiple factors. First, 40% of genes lack identifiable human249

orthologs, reflecting evolutionary divergence and the discovery of invertebrate-specific longevity250

mechanisms. Genes like DAF-2 (insulin receptor) have human orthologs, but many C. elegans-251

specific genes do not. Second, even with conservation, the genetic architecture of lifespan may252

differ between species with 3-week versus 70-year lifespans. Third, GWAS statistical power is253

limited for detecting variants with modest effects or operating through specific tissues.254

4.2 Mitochondrial Dominance Among Validated Candidates255

A striking finding is the dominance of mitochondrial proteins among our top-ranked candi-256

dates. Four of the top five genes (CYC1, TUFM, CYCS, SDHB) encode components of the257

mitochondrial respiratory chain or translation machinery. This convergence supports the “mito-258

chondrial theory of aging,” which posits that declining mitochondrial function drives age-related259

deterioration [Friedman and Nunnari, 2014, Sabbatinelli et al., 2022, Shosha et al., 2024].260

Importantly, these mitochondrial targets show human genetic validation via Alzheimer’s261

disease GWAS, connecting longevity mechanisms to neurodegeneration. Mitochondrial dys-262

function is increasingly recognized as a driver of cognitive decline, and our results suggest that263
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interventions improving mitochondrial function may address both longevity and brain aging264

[Houtkooper et al., 2013].265

4.3 Drug Repurposing Opportunities266

The identification of 50 approved kinase inhibitors targeting our top candidate (PIK3C2G)267

opens drug repurposing opportunities. Kinase inhibitors originally developed for cancer—268

including imatinib, trametinib, erlotinib, and gefitinib—target the insulin/PI3K pathway cen-269

tral to longevity. Recent preclinical evidence shows trametinib (MEK inhibitor) extends mouse270

lifespan by 10% as monotherapy and 27% in combination with rapamycin [Partridge et al.,271

2025, Olivo et al., 2021]. These approved drugs could potentially be tested in aging trials with272

known safety profiles.273

For mitochondrial targets (CYC1, TUFM), compounds such as fisetin and epigallocatechin274

gallate represent senolytic and mitochondrial-protective agents worthy of further investigation.275

The relatively low clinical advancement (only 1 gene with aging trials) highlights a gap between276

druggability potential and clinical execution.277

4.4 Limitations278

Several limitations should be noted. First, our analysis focused on 50 genes meeting strict279

lifespan extension criteria, excluding many genes with moderate effects or context-dependent280

longevity associations. Second, GWAS power is limited for rare variants and pathway-level281

effects; the absence of GWAS evidence does not disprove human relevance. Third, druggability282

was assessed by compound count rather than specificity or therapeutic index. Fourth, clinical283

trial searches may miss trials not registered in ClinicalTrials.gov or using indirect pathway284

interventions.285

Our scoring algorithm weights components equally within domains, which may not reflect286

biological importance. Future iterations could incorporate expert elicitation or cross-validation287

against clinical outcomes.288

4.5 Future Directions289

This study establishes a framework for systematic translation scoring that can be expanded in290

several directions:291

1. Expanded gene sets: Include DrugAge and CellAge databases for a comprehensive292

longevity gene universe293

2. Mendelian randomization: Test causal relationships between variants and lifespan294

using two-sample MR295

3. Clinical trial design: Prioritize Phase II trials for kinase inhibitors (trametinib, ima-296

tinib) in aging biomarker endpoints297

4. Mechanistic validation: CRISPR screens targeting top candidates in human iPSC-298

derived neurons to test Alzheimer’s connections299
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5. Network medicine: Expand STRING analysis to identify multi-target combinations300

5 Conclusions301

The Longevity Translation Scorecard provides the first systematic quantification of the gap302

between model organism longevity discoveries and human genetic evidence. Our finding that303

74% of model organism genes lack human validation emphasizes the need for genetic validation304

prior to clinical translation. The dominance of mitochondrial proteins (CYC1, TUFM, CYCS,305

SDHB) among validated candidates supports targeting bioenergetic pathways for human aging306

interventions. Approved kinase inhibitors (imatinib, trametinib) targeting the top candidate307

PIK3C2G pathway represent immediate repurposing opportunities. This evidence-based pri-308

oritization framework can guide resource allocation in longevity research toward interventions309

with the highest probability of clinical translation.310
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