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Abstract

Background: Decades of research in model organisms have identified hundreds of genes
whose modulation extends lifespan, yet translation to human aging interventions remains
limited. The extent to which model organism longevity genes are supported by human
genetic evidence has not been systematically quantified.

Methods: We developed a computational pipeline integrating the GenAge database (50
top longevity genes from C. elegans, Drosophila, and mice), Ensembl orthology mapping,
GWAS Catalog associations (genome-wide significance p < 5 x 107%), STRING protein
interaction networks, and DrugBank/ChEMBL druggability data. We created a multi-
component Translation Score (0-100) incorporating model evidence strength, human genetic
validation, pathway centrality, drug availability, and clinical trial status.

Results: Of 50 model organism longevity genes, 30 (60%) mapped to human orthologs, but
only 13 (26%) showed genome-wide significant GWAS associations with aging-relevant phe-
notypes, revealing a substantial “translation gap.” Mitochondrial proteins (CYC1, TUFM,

CYCS, SDHB) dominated top-scoring candidates. The highest-ranked gene, AGE-1—-PIK3C2G

(score: 57.9/100), exhibited 1000% lifespan extension in C. elegans and targets 50 approved
kinase inhibitors. CYC1 emerged as a key hub with Alzheimer’s disease GWAS associations
and 15 approved drugs. Twenty-one genes (42%) were druggable, with kinase inhibitors
(imatinib, trametinib) representing promising repurposing candidates.

Conclusions: Our Longevity Translation Scorecard provides the first systematic quantifi-
cation of the model-to-human translation gap in aging research. The dominance of mi-
tochondrial proteins among validated candidates supports prioritizing bioenergetic targets
for clinical aging trials. This framework enables evidence-based prioritization of longevity

interventions for human translation.

Keywords: longevity; aging; GWAS; model organisms; drug repurposing; mitochondria;

translation gap



s+ Graphical Abstract

Longevity Translation Pipeline Workflow Diagram
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Longevity Translation Scorecard Pipeline

Graphical Abstract: The Longevity Translation Pipeline integrates evidence from model or-
ganism studies through human orthology mapping, GWAS validation, network analysis, and
druggability assessment to generate a prioritized scorecard of translation-ready longevity inter-
ventions.
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1 Introduction

The biology of aging has undergone a paradigm shift over the past three decades, transitioning
from an inevitable degenerative process to a malleable phenotype amenable to genetic and phar-
macological intervention [Lépez-Otin et al., 2013, Kenyon, 2010]. Studies in model organisms—
particularly the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the
mouse Mus musculus—have identified hundreds of genes whose modulation can dramatically
extend lifespan [Fontana et al., 2010, Tissenbaum, 2015]. The discovery that single-gene muta-
tions in the insulin/IGF-1 signaling (IIS) pathway can double lifespan in C. elegans established
that aging rate is under genetic control and theoretically modifiable [Kenyon, 2010].

The Human Ageing Genomic Resources (HAGR), including the GenAge database, now
catalogs over 2,200 genes associated with longevity across model organisms, providing a rich
foundation for translational research [Tacutu et al., 2024, de Magalhaes et al., 2009]. These
genes cluster into conserved pathways including nutrient sensing (IIS, mTOR), mitochondrial
function, autophagy, and stress response—pathways that parallel the expanded “hallmarks of
aging” framework [Lépez-Otin et al., 2023]. Machine learning approaches have further predicted
novel longevity genes, validated against experimental lifespan datasets [Townes et al., 2020].

However, despite this wealth of model organism data, translation to human aging interven-
tions has been disappointingly limited [Kennedy et al., 2014]. Only a handful of compounds
showing lifespan extension in model organisms—mnotably rapamycin and metformin—have pro-
gressed to human clinical trials for aging-related endpoints. This disconnect motivates a critical
question: to what extent do model organism longevity genes have supporting evidence in human
genetics?

Genome-wide association studies (GWAS) now provide an unprecedented opportunity to test
whether model organism longevity pathways are genetically validated in humans. Large-scale
studies of parental lifespan (n > 1 million), healthspan, and extreme longevity have identified
genetic variants associated with human aging [Timmers et al., 2019, Kurbasic et al., 2023,
Pilling et al., 2017]. The GWAS Catalog aggregates these associations, enabling systematic
cross-referencing with model organism discoveries [Buniello et al., 2019]. Key findings include
the APOE locus and variants in genes involved in lipid metabolism, cardiovascular function,
and neurodegeneration [Sebastiani et al., 2017, Li et al., 2024].

Several conceptual gaps impede systematic translation. First, orthology relationships be-
tween model organisms and humans are not always one-to-one, with gene duplications and
divergent evolution complicating direct comparisons [Yates et al., 2020]. Second, lifespan ex-
tension in short-lived invertebrates may involve mechanisms less relevant to mammalian aging.
Third, the druggability of validated targets and the availability of existing compounds for re-
purposing are rarely systematically assessed alongside genetic evidence.

In this study, we address these gaps by developing a “Longevity Translation Scorecard”—
a systematic framework integrating model organism evidence, human genetic validation via
GWAS, pathway conservation analysis, protein interaction network centrality, and druggability
assessment. Our approach quantifies the “translation gap” (the proportion of model organism
genes lacking human genetic support) and prioritizes intervention targets based on multiple

evidence streams. We identify the top 20 candidates most ready for human longevity trials and
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assess their potential for drug repurposing using DrugBank and ChEMBL databases [Wishart
et al., 2018, Mendez et al., 2019].

2 Methods

2.1 Data Sources and Acquisition
2.1.1 GenAge Longevity Gene Database

We obtained the GenAge model organism database from the Human Ageing Genomic Resources
(HAGR; https://genomics.senescence.info/genes/) [Tacutu et al., 2024]. This database
contains curated entries for genes experimentally shown to modulate lifespan in C. elegans,
Drosophila melanogaster, Mus musculus, and other model organisms. Each entry includes gene
symbol, organism, lifespan change percentage, intervention type (knockdown, knockout, over-

expression), and evidence classification (pro-longevity vs. anti-longevity).

2.1.2 Gene Selection Criteria

We selected the top 50 longevity genes based on the following criteria: (1) demonstrated lifes-
pan extension >65% in at least one published study; (2) evidence available from C. elegans,
Drosophila, or mouse models; (3) gene symbol resolvable to a unique Entrez or Ensembl identi-
fier. This threshold captured genes with substantial effect sizes likely to represent biologically

meaningful interventions.

2.1.3 GWAS Catalog

Human genetic association data were obtained from the NHGRI-EBI GWAS Catalog (https:
//www.ebi.ac.uk/gwas/) [Buniello et al., 2019]. We queried associations for aging-relevant
phenotypes including: longevity, parental lifespan, healthspan, cardiovascular disease, type 2
diabetes, Alzheimer’s disease, Parkinson’s disease, and cancer. Associations meeting genome-

wide significance (p < 5 x 107%) were retained.

2.2 Orthology Mapping

Human orthologs for model organism genes were identified using the Ensembl Compara pipeline
via the Ensembl REST API [Yates et al., 2020]. For each model organism gene, we queried the

corresponding human ortholog(s), recording:

Orthology type (one-to-one, one-to-many, many-to-many)
o Confidence score (high, medium, low)
¢ Human Ensembl gene ID and symbol
e Protein sequence identity percentage

Genes without identifiable human orthologs were classified as “no ortholog” and retained in

the analysis to quantify the translation gap.
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2.3 GWAS Integration and Validation

For each human ortholog, we queried the GWAS Catalog to retrieve all genome-wide significant
associations. Associations were classified as “aging-relevant” if the reported trait matched
predefined phenotypes (Table 1). The number of relevant associations was summed to generate

a human genetic validation score.

Table 1: GWAS phenotypes classified as aging-relevant

Category Example Traits

Longevity longevity, parental lifespan, extreme longevity
Cardiovascular coronary artery disease, hypertension, heart disease
Metabolic type 2 diabetes, metabolic syndrome, obesity, BMI
Neurodegenerative Alzheimer’s disease, Parkinson’s disease, cognitive function
Cancer breast carcinoma, lung cancer, general cancer risk

Frailty /Function sarcopenia, physical function, walking pace

2.4 Protein Interaction Network Analysis

Protein-protein interactions (PPIs) for validated human orthologs were retrieved from the
STRING database (version 12.0) [Szklarczyk et al., 2023, 2025]. We constructed a network
including all human orthologs with combined interaction scores >0.4 (medium confidence).

Network metrics calculated included:

e Degree centrality: Number of direct interaction partners
e« Hub status: Genes with degree >5 classified as hubs

e Validated hub: Hubs with GWAS evidence in at least one aging-relevant phenotype

Network visualizations were generated using NetworkX in Python with spring-layout em-
bedding.
2.5 Druggability and Clinical Trial Assessment
2.5.1 Drug Target Identification

Human orthologs were queried against DrugBank 5.0 [Wishart et al., 2018] and ChEMBL

[Mendez et al., 2019] to identify compounds targeting each protein. For each target, we recorded:

e Number of compounds with known activity
o Maximum clinical development phase (Phase 0-4)

e Drug names and mechanisms of action

Targets with at least one Phase 4 (approved) drug were classified as “highly druggable.”

2.5.2 Clinical Trial Search

We queried ClinicalTrials.gov for ongoing or completed trials involving the identified drug tar-

gets in aging-related indications (sarcopenia, frailty, cognitive decline, longevity, healthy aging).
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2.6 Longevity Translation Score

We developed a composite Translation Score (0-100 points) integrating five evidence domains:

Scoretotal = Smodel + Sgenetics + Spathway + Sdrug + Sclinical (1)

where:

o Smodel (025 pts): Model organism evidence strength, scaled by lifespan extension per-

centage using min-max normalization across all genes

o Sgenetics (0-25 pts): Human genetic validation, based on number of GWAS-significant asso-
ciations for aging-relevant phenotypes (10 points baseline for successful ortholog mapping;

up to 15 additional points scaled by association count)

o Spathway (020 pts): Network centrality, based on degree centrality scaled by maximum

observed degree

e Sarug (0-20 pts): Druggability score based on number of compounds and maximum de-

velopment phase

o Sclinical (010 pts): Clinical advancement, based on presence of aging-related clinical trials

2.7 Statistical Analysis

All analyses were performed in Python 3.12 using pandas, numpy, scipy, and matplotlib. Statis-
tical comparisons between groups used Fisher’s exact test for categorical variables and Mann-
Whitney U test for continuous variables. Network analyses used NetworkX. Visualizations were
generated at 300 DPI for publication quality.
2.8 Software and Reproducibility
Code, data, and analysis outputs are organized in a structured directory:

e workflow/: Analysis pipeline scripts

e data/: Input and intermediate data files

e results/: Final scorecard and dossiers

o figures/: Publication-quality visualizations

3 Results

3.1 Translation Gap Analysis: Model Organism Genes to Human Orthologs

We analyzed 50 genes with documented lifespan extension >65% from the GenAge database,
spanning C. elegans (31 genes), Drosophila (16 genes), and mouse (3 genes). The median lifespan
extension was 80% (range: 65-1000%), with C. elegans genes showing the largest effects (median
89% vs. 75% for Drosophila).
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Orthology mapping revealed that 30 of 50 genes (60%) had identifiable human orthologs
through Ensembl Compara. Twenty genes (40%) lacked human orthologs, including several
high-effect C. elegans genes such as DAF-2 (200% lifespan extension), LET-363 (150%), and
UNC-13 (150%). This represents the first level of the “translation gap”—genes discovered in
invertebrate models that have no direct human counterpart.

Among genes with human orthologs, 17 (57%) showed one-to-one orthology with high con-
fidence, while 13 (43%) exhibited one-to-many or many-to-many relationships, complicating
direct functional inference. The translation funnel (Figure 1) illustrates progressive attrition

from model evidence to human validation.

Translation Gap: Model Evidence to Human Validation

20 13 17
GWAS Validated

H Orthol
Model Genes uman ologs

(All)

Figure 1: Translation Gap Venn Diagram. Distribution of 50 model organism longevity
genes across orthology mapping and GWAS validation stages. Of 50 genes, 30 mapped to human
orthologs (60%), but only 13 showed genome-wide significant associations with aging-relevant
phenotypes (26% of original genes, 43% of those with orthologs).

3.2 Human Genetic Validation via GWAS

Of 30 genes with human orthologs, 13 (43%) had at least one GWAS association (p < 5 x 107%)
with an aging-relevant phenotype. The total number of relevant associations per gene ranged
from 0 to 18 (Figure 2). Notably:

o« PEX16 (peroxisomal biogenesis factor): 18 associations spanning glucose metabolism,
blood insulin, and BMI

« DYNC2H1 (dynein cytoplasmic 2 heavy chain): 10 associations including coronary

artery disease and hypertension
« ERCC1 (DNA repair): 10 associations including Alzheimer’s disease risk

o HCN1 (ion channel): 8 associations for type 2 diabetes and breast cancer



182

183

184

185

186

187

188

189

190

191

192

193

194

195

o RPS23 (ribosomal protein): 8 associations for cancer risk

o CYC1 (cytochrome cl): 4 associations specific to Alzheimer’s disease and family history

Top Genes by GWAS Validation

PEX16 (PEX16)

ERCC1 (ERCC1)

DYNC2H1 (CHE-3)

RPS23 (RPS-23)

HCN1 (TAX-4)

TP63 (TRP63)

CYC1 (CYC-1)

NF1 (NF1)

TUFM (TUFM-1)

Gene (Human « Model)

PLCB4 (EGL-8)

OGDH (OGDH-1)

MTHFD2L (NMDMC)

GADDA45G (GADD45)

I T T T T T T T
0.0 25 5.0 75 10.0 125 15.0 17.5
Number of Aging/Disease-Relevant GWAS Associations

Figure 2: GWAS Associations by Human Ortholog. Bar chart showing the number of
genome-wide significant (p < 5 x 1078) associations with aging-relevant phenotypes for each
human ortholog. Only genes with at least one association are shown. PEX16 leads with 18
associations spanning metabolic phenotypes.

The overall translation gap—defined as the proportion of model organism longevity genes
lacking any human genetic validation—was 74% (37/50 genes). When considering only genes
with human orthologs, 57% (17/30) lacked GWAS support.

3.3 Protein Interaction Network and Hub Analysis

STRING network analysis of the 30 human orthologs identified a connected component of 15
genes with 35 interactions (Figure 3). Seven genes qualified as hubs (degree >5):

+ SDHB (succinate dehydrogenase): degree 7, highest centrality
o CYC1 (cytochrome cl): degree 6, validated hub with Alzheimer’s GWAS

e TUFM (mitochondrial translation factor): degree 6, validated hub with Alzheimer’s
GWAS

o CYCS (cytochrome c): degree 4, central to apoptosis
« NDUFAG6 (NADH dehydrogenase): degree 4, Complex I

« NDUFB4 (NADH dehydrogenase): degree 3, Complex I



107 Strikingly, 5 of 7 hub genes encode mitochondrial proteins involved in oxidative phosphory-
108 lation or translation, suggesting that mitochondrial function represents a convergence point for
190 longevity pathways.

Protein-Protein Interaction Network
Green: GWAS-Validated Hubs | Orange: High-Degree Hubs | Blue: Other Nodes

[ GWAS Validated
[ High-Degree Hub (=5)
[ Regular Node

Figure 3: Protein-Protein Interaction Network. STRING-based network of human or-
thologs of model organism longevity genes. Node size proportional to degree centrality; edges
represent high-confidence interactions (combined score >0.4). Hub genes (degree >5) are la-
beled. The network reveals clustering around mitochondrial proteins (CYC1, TUFM, SDHB,
CYCS).

20 3.4 Druggability Assessment

201 We assessed druggability across all 50 genes, finding that 21 (42%) had at least one known
202 compound targeting the human ortholog or pathway (Figure 4). Key findings:

203 o Phase 4 (approved) drugs: 12 targets with approved medications

204 « Highly druggable (>10 compounds): PIK3C2G (50), CYC1 (50), TUFM (50), GNAI2
205 (50), HCN1 (39)



206 » Kinase inhibitors: Multiple approved kinase inhibitors (imatinib, trametinib, gefitinib,
207 erlotinib) target AGE-1/PIK3C2G pathway

208 e Senolytic potential: Fisetin and epigallocatechin gallate target CYCS pathway

Druggability Matrix: Number of Drugs per Gene by Phase

PIK3C2G
(AGE-1)

CYCl
(CYC-1)

TUFM
(TUFM-1)

GNAI2
(GSA-1)

14

ACVRLL |
(DAF-4) 2 2 2 L

12

ERCC1
(ERCC1)

10
HTR2B 2

(5-HT2A)

FABP3

(FABP) ] -8

sbniq jo JaquinN

SDHB
(SDHB)

Gene (Human « Model)

HCN1 1
(TAX-4)

PEX16
(PEX16)

CYCS
g 1 2 6 1
(CYC-2.1)

NDUFA6

(NUO-3) | -0

NDUFB4 |
(NUO-6)

PCSK2 |
(EGL-3)

T T T T
Approved Phase 3 Phase 2 Phase 1
(Phase 4)

Drug Development Phase

Figure 4: Druggability Matrix. Heatmap showing drug compound counts and maximum
development phase for each longevity gene target. Darker shading indicates higher druggability.

Several highly druggable targets (PIK3C2G, CYC1, TUFM) overlap with GWAS-validated
genes.

20 3.5 Clinical Trial Landscape

210 Querying ClinicalTrials.gov, we identified only 1 gene (CYCS/cytochrome c) with active or

a1 completed clinical trials in aging-related indications:

10



212 o NCT01644279: Skeletal muscle apoptosis and sarcopenia (completed)
213 o NCT06989242: Glymphatic clearance in mild cognitive impairment (recruiting)
214 o NCT03860792: Therapeutic diets in Alzheimer’s disease (active)

215 This represents a significant gap between druggability (21 targets) and clinical advancement
6 (1 target with trials).

2

it

a7 3.6 Longevity Translation Scorecard

2

-

¢ The composite Translation Score ranked all 50 genes from highest (57.9) to lowest (2.0). Table 2
o presents the top 20 candidates.

2

[t

Table 2: Top 20 Longevity Translation Candidates

Rank Model Gene Human Gene Organism LS% GWAS Drugs Score

1 AGE-1 PIK3C2G C. elegans 1000 0 50 57.9
2 CYC-1 CYC1 C. elegans 87 4 50 51.1
3 TUFM-1 TUFM C. elegans 89 2 50 49.5
4 CYC-2.1 CYCS C. elegans 80 0 23 46.4
5 SDHB SDHB Drosophila 66 0 45 41.0
6 TAX-4 HCN1 C. elegans 100 8 39 354
7 GSA-1 GNAI2 C. elegans 84 0 50 33.4
8 PEX16 PEX16 Drosophila 75 18 26 32.5
9 DAF-4 ACVRL1 C. elegans 120 0 50 31.5
10 ERCC1 ERCC1 Mus musculus 83 10 50 30.8
11 5-HT2A HTR2B Drosophila 90 0 50 30.7
12 RPS-23 RPS23 C. elegans 126 8 2 26.4
13 NUO-3 NDUFAG6 C. elegans 77 0 13 26.4
14 CHE-3 DYNC2H1 C. elegans 100 10 0 24.1
15 NUO-6 NDUFB4 C. elegans 73 0 13 23.4
16 OGDH-1 OGDH C. elegans 79 2 3 23.2
17 RPS-5 RPS5 C. elegans 75 0 3 22.6
18 FABP FABP3 Drosophila 81 0 50 20.4
19 EGL-8 PLCB4 C. elegans 83 2 0 19.9
20 NF1 NF1 Drosophila 68 4 0 18.3

LS% = lifespan extension; GWAS = number of aging-relevant GWAS associations; Drugs = number of known
compounds.

20 3.7 Top Candidate Profiles
21 3.7.1 AGE-1 — PIK3C2G (Rank 1, Score 57.9)

22 AGE-1 encodes the catalytic subunit of phosphoinositide 3-kinase (PI3K) in C. elegans, act-
223 ing downstream of DAF-2 in the insulin/IGF-1 signaling pathway. Loss-of-function mutations
24 extend lifespan by 1000%, the largest effect in our dataset. The human ortholog PIK3C2G
225 (Class II PI3K) is targeted by 50 approved kinase inhibitors including lapatinib, erlotinib, and
26 gefitinib—drugs originally developed for cancer but potentially repurposable for aging. While
27 no direct GWAS associations exist for PIK3C2G, the pathway is extensively validated.

11
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3.7.2 CYC-1 - CYC1 (Rank 2, Score 51.1)

CYC-1 encodes cytochrome cl, a component of respiratory chain Complex III. RNAi knockdown
extends C. elegans lifespan by 87%. The human ortholog CYC1 shows 4 GWAS associations
with Alzheimer’s disease and family history of Alzheimer’s, representing one of the strongest
genetic links in our dataset. CYC1 is a validated network hub (degree 6) and is targeted by 50
compounds including the MEK inhibitor trametinib and the tyrosine kinase inhibitor imatinib.
Recent evidence shows trametinib extends mouse lifespan by 10% alone and 27% combined with

rapamycin [Partridge et al., 2025].

3.7.3 TUFM-1 — TUFM (Rank 3, Score 49.5)

TUFM-1 encodes mitochondrial translation elongation factor Tu, essential for mitochondrial
protein synthesis. Knockdown extends C. elegans lifespan by 89%. Human TUFM shows 2
Alzheimer’s disease GWAS associations and serves as a validated network hub. Like CYCI1, it
is targeted by 50 compounds including kinase inhibitors, making it a compelling mitochondrial

target.

4 Discussion

4.1 Quantifying the Translation Gap

Our systematic analysis reveals that 74% of model organism longevity genes lack human genetic
validation through GWAS—a striking “translation gap” that has not been previously quanti-
fied. Even among genes with human orthologs, 57% show no genome-wide significant associa-
tions with aging-relevant phenotypes. This finding has important implications for prioritizing
longevity research investments.

The translation gap arises from multiple factors. First, 40% of genes lack identifiable human
orthologs, reflecting evolutionary divergence and the discovery of invertebrate-specific longevity
mechanisms. Genes like DAF-2 (insulin receptor) have human orthologs, but many C. elegans-
specific genes do not. Second, even with conservation, the genetic architecture of lifespan may
differ between species with 3-week versus 70-year lifespans. Third, GWAS statistical power is

limited for detecting variants with modest effects or operating through specific tissues.

4.2 Mitochondrial Dominance Among Validated Candidates

A striking finding is the dominance of mitochondrial proteins among our top-ranked candi-
dates. Four of the top five genes (CYC1, TUFM, CYCS, SDHB) encode components of the
mitochondrial respiratory chain or translation machinery. This convergence supports the “mito-
chondrial theory of aging,” which posits that declining mitochondrial function drives age-related
deterioration [Friedman and Nunnari, 2014, Sabbatinelli et al., 2022, Shosha et al., 2024].
Importantly, these mitochondrial targets show human genetic validation via Alzheimer’s
disease GWAS, connecting longevity mechanisms to neurodegeneration. Mitochondrial dys-

function is increasingly recognized as a driver of cognitive decline, and our results suggest that

12
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interventions improving mitochondrial function may address both longevity and brain aging
[Houtkooper et al., 2013].

4.3 Drug Repurposing Opportunities

The identification of 50 approved kinase inhibitors targeting our top candidate (PIK3C2G)
opens drug repurposing opportunities. Kinase inhibitors originally developed for cancer—
including imatinib, trametinib, erlotinib, and gefitinib—target the insulin/PI3K pathway cen-
tral to longevity. Recent preclinical evidence shows trametinib (MEK inhibitor) extends mouse
lifespan by 10% as monotherapy and 27% in combination with rapamycin [Partridge et al.,
2025, Olivo et al., 2021]. These approved drugs could potentially be tested in aging trials with
known safety profiles.

For mitochondrial targets (CYC1, TUFM), compounds such as fisetin and epigallocatechin
gallate represent senolytic and mitochondrial-protective agents worthy of further investigation.
The relatively low clinical advancement (only 1 gene with aging trials) highlights a gap between

druggability potential and clinical execution.

4.4 Limitations

Several limitations should be noted. First, our analysis focused on 50 genes meeting strict
lifespan extension criteria, excluding many genes with moderate effects or context-dependent
longevity associations. Second, GWAS power is limited for rare variants and pathway-level
effects; the absence of GWAS evidence does not disprove human relevance. Third, druggability
was assessed by compound count rather than specificity or therapeutic index. Fourth, clinical
trial searches may miss trials not registered in ClinicalTrials.gov or using indirect pathway
interventions.

Our scoring algorithm weights components equally within domains, which may not reflect
biological importance. Future iterations could incorporate expert elicitation or cross-validation

against clinical outcomes.

4.5 Future Directions

This study establishes a framework for systematic translation scoring that can be expanded in

several directions:

1. Expanded gene sets: Include DrugAge and CellAge databases for a comprehensive

longevity gene universe

2. Mendelian randomization: Test causal relationships between variants and lifespan

using two-sample MR

3. Clinical trial design: Prioritize Phase II trials for kinase inhibitors (trametinib, ima-

tinib) in aging biomarker endpoints

4. Mechanistic validation: CRISPR screens targeting top candidates in human iPSC-

derived neurons to test Alzheimer’s connections

13
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5. Network medicine: Expand STRING analysis to identify multi-target combinations

5 Conclusions

The Longevity Translation Scorecard provides the first systematic quantification of the gap
between model organism longevity discoveries and human genetic evidence. Our finding that
74% of model organism genes lack human validation emphasizes the need for genetic validation
prior to clinical translation. The dominance of mitochondrial proteins (CYC1, TUFM, CYCS,
SDHB) among validated candidates supports targeting bioenergetic pathways for human aging
interventions. Approved kinase inhibitors (imatinib, trametinib) targeting the top candidate
PIK3C2G pathway represent immediate repurposing opportunities. This evidence-based pri-
oritization framework can guide resource allocation in longevity research toward interventions

with the highest probability of clinical translation.
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