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Abstract

Metabolic engineering of Escherichia coli for lycopene biosynthesis has traditionally relied
on stoichiometric models (Flux Balance Analysis, FBA) to predict theoretical maximum
yields. However, these predictions often overestimate achievable flux by orders of magnitude
because they neglect kinetic constraints imposed by enzyme catalytic capacity. Here, we
present an integrated kinetic-stoichiometric framework to identify true bottlenecks in the
lycopene biosynthesis pathway and derive optimal enzyme expression strategies. Using the
iJO1366 genome-scale metabolic model, we established a theoretical maximum lycopene
flux of 1.057 mmol/gDW/h. Kinetic analysis revealed severe bottlenecks in the heterologous
pathway: phytoene desaturase (CrtI, bottleneck score 6480) and phytoene synthase (CrtB,
score 6339) exhibited catalytic capacities approximately 6000-fold lower than FBA demand.
Multi-objective genetic algorithm optimization identified a robust 1:7:7 expression ratio
(CrtE:CrtB:CrtI) that maximizes pathway flux under resource constraints. At a 150-fold
total overexpression budget, this strategy predicts 70.7-fold flux improvement over baseline
(11.5/µs), closing the gap between stoichiometric potential and kinetic reality. This work
demonstrates that integrating enzyme kinetics with genome-scale models provides actionable
engineering targets, transforming theoretical predictions into experimentally feasible strain
designs.

Keywords: metabolic engineering, lycopene biosynthesis, flux balance analysis, enzyme
kinetics, bottleneck analysis, genetic algorithm optimization, MEP pathway, resource alloca-
tion

1 Introduction

1.1 Background and Motivation

Lycopene, a C40 carotenoid with the molecular formula C40H56, is a high-value compound
with extensive applications in nutraceuticals, pharmaceuticals, and food industries due to its
potent antioxidant properties and association with reduced risk of chronic diseases including
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cardiovascular disease and certain cancers [1]. Microbial production of lycopene in Escherichia
coli offers a sustainable alternative to extraction from plant sources such as tomatoes, but
achieving economically viable titers remains a significant challenge in industrial biotechnology
[2, 3].

Metabolic engineering approaches have traditionally employed constraint-based modeling,
particularly Flux Balance Analysis (FBA), to predict theoretical maximum yields and guide
strain design [4]. While FBA is computationally efficient and capable of handling genome-scale
networks comprising thousands of reactions and metabolites, it operates under the fundamental
assumption that all enzymes operate at sufficient capacity to achieve predicted fluxes—an
assumption that frequently fails when heterologous pathways are introduced into production
hosts [5, 6].

1.2 The Kinetic-Stoichiometric Gap

The disconnect between FBA predictions and experimental outcomes is particularly pronounced
in three scenarios: (1) when heterologous enzymes have poor kinetic properties (low kcat or
high Km), (2) when substrate concentrations are limiting, or (3) when enzyme expression levels
are insufficient to sustain predicted fluxes. In the lycopene biosynthesis pathway, the three
heterologous enzymes—geranylgeranyl diphosphate (GGPP) synthase (CrtE), phytoene synthase
(CrtB), and phytoene desaturase (CrtI)—are known to be rate-limiting [7], yet systematic kinetic
characterization integrated with stoichiometric models has not been comprehensively performed.

This gap between stoichiometric potential and kinetic reality represents a fundamental
challenge in metabolic engineering: genome-scale models excel at identifying thermodynamically
feasible pathways and optimal flux distributions, but they provide no guidance on whether the
predicted fluxes are kinetically achievable with available enzyme activities [8, 9].

1.3 Study Objectives

This study addresses the kinetic-stoichiometric gap through a comprehensive computational
framework that:

1. Establishes the stoichiometric baseline for lycopene production using the iJO1366 genome-
scale metabolic model of E. coli [4];

2. Curates kinetic parameters (kcat, Km) and intracellular metabolite concentrations for the
methylerythritol 4-phosphate (MEP) and lycopene pathways from the BRENDA database
[10] and primary literature;

3. Identifies true kinetic bottlenecks by quantitatively comparing enzyme catalytic capacities
to FBA flux demands;

4. Optimizes enzyme expression ratios using multi-objective genetic algorithms (PyMOO
framework [11]) to maximize pathway flux under realistic resource constraints.
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2 Methods

2.1 Computational Framework Overview

Figure 1 presents the integrated kinetic-stoichiometric framework developed in this study. The
framework consists of four interconnected modules: (1) stoichiometric modeling with FBA, (2)
kinetic parameterization from databases and literature, (3) bottleneck identification through
capacity-demand comparison, and (4) multi-objective optimization for resource allocation.

Figure 1: Kinetic-stoichiometric integration framework for metabolic engineering.
The workflow proceeds from genome-scale FBA (top) through kinetic parameterization and
bottleneck analysis (middle) to multi-objective optimization (bottom). Blue boxes indicate
computational steps, green boxes represent data sources, orange boxes show calculations, and
red boxes highlight key outputs. The framework identifies enzymes where kinetic capacity (Vcap)
is insufficient to meet FBA-predicted flux demand (VFBA), then optimizes expression levels to
maximize pathway flux within a defined resource budget.

2.2 Stoichiometric Modeling

2.2.1 Model Selection and Preparation

We employed the iJO1366 genome-scale metabolic model of E. coli K-12 MG1655 [4], obtained
from the BiGG Models database [12]. This model contains 2,587 reactions, 1,808 metabolites,
and 1,367 genes, providing a comprehensive representation of E. coli central and secondary
metabolism. Model manipulation and analysis were performed using COBRApy v0.29 [13].

2.2.2 Lycopene Pathway Construction

The heterologous lycopene biosynthesis pathway was represented by three enzymatic reactions
derived from Pantoea ananatis carotenoid genes:
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• CrtE (GGPP synthase): Catalyzes the condensation of farnesyl diphosphate (FPP, C15)
with isopentenyl diphosphate (IPP, C5) to form geranylgeranyl diphosphate (GGPP, C20)

FPP + IPP → GGPP + PPi (1)

• CrtB (Phytoene synthase): Catalyzes the head-to-head condensation of two GGPP
molecules to form phytoene (C40)

2 GGPP → Phytoene + 2 PPi (2)

• CrtI (Phytoene desaturase): Catalyzes four sequential desaturation steps converting
phytoene to lycopene

Phytoene + 4 FAD → Lycopene + 4 FADH2 (3)

An exchange reaction was added to enable lycopene export from the model, and the objective
function was set to maximize lycopene secretion flux.

2.2.3 Flux Balance Analysis

FBA was performed under standard aerobic growth conditions on glucose minimal medium with
the following constraints:

• Glucose uptake: 10 mmol/gDW/h

• Oxygen uptake: unlimited (aerobic conditions)

• ATP maintenance: model default values

Linear programming was used to identify the maximum theoretical lycopene production flux
subject to mass balance and thermodynamic constraints [4].

2.3 Kinetic Parameterization

2.3.1 Enzyme Kinetic Parameters

Kinetic parameters (kcat, Km) were curated from the BRENDA enzyme database [10] and
primary literature for 11 enzymes: 8 in the native MEP (methylerythritol 4-phosphate) pathway
and 3 in the heterologous lycopene pathway. Parameter values were prioritized according to the
following hierarchy:

1. E. coli measurements (when available)

2. Measurements from phylogenetically related organisms

3. Consensus values from multiple studies
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2.3.2 Metabolite Concentrations

Intracellular metabolite concentrations were estimated from metabolomics studies in E. coli
grown under aerobic conditions [14, 15]. Concentrations ranged from 0.1 µ (lycopene pathway
intermediates) to 2 m (central carbon metabolites), spanning 4.3 orders of magnitude.

2.3.3 Enzyme Concentrations

A uniform baseline enzyme concentration of 5 µ was assumed for all pathway enzymes, reflecting
typical intracellular protein concentrations in E. coli [16]. This value served as the reference
(1×) level for subsequent optimization studies.

2.4 Bottleneck Analysis

2.4.1 Kinetic Capacity Calculation

For each enzyme, the kinetic capacity (Vcap) was calculated using the Michaelis-Menten equation:

Vcap = kcat × [E] × fsat (4)

where [E] is the enzyme concentration and fsat is the substrate saturation fraction:

fsat = [S]
[S] + Km

(5)

2.4.2 Bottleneck Score Definition

The bottleneck score for each enzyme was defined as the ratio of FBA-predicted flux demand to
kinetic capacity:

Bscore = VFBA
Vcap

(6)

A score greater than 1 indicates that the enzyme lacks sufficient catalytic capacity to support
the predicted flux at baseline expression, with higher scores representing more severe bottlenecks
requiring greater engineering intervention.

2.5 Multi-Objective Optimization

2.5.1 Problem Formulation

The optimization problem was formulated as a resource allocation problem:
Objective: Maximize pathway flux

max Vpathway = min(V CrtE
cap , V CrtB

cap , V CrtI
cap ) (7)

Decision Variables: Fold-change expression levels (xCrtE, xCrtB, xCrtI)
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Constraints:

1 ≤ xi ≤ 100 (expression bounds) (8)∑
i

xi ≤ Bmax (total resource budget) (9)

The capacity of each enzyme scales linearly with its expression level:

V i
cap(xi) = V i

cap(1) × xi (10)

2.5.2 Optimization Algorithm

Multi-objective optimization was performed using the PyMOO framework v0.6 [11] with the
NSGA-II (Non-dominated Sorting Genetic Algorithm II) variant. Algorithm parameters were:

• Population size: 100

• Generations: 200

• Crossover probability: 0.9

• Mutation probability: 0.1

• Random seed: 42 (for reproducibility)

Four budget levels were systematically tested: 20×, 50×, 100×, and 150× total fold-change.

3 Results

3.1 Stoichiometric Potential: FBA Predictions

Flux Balance Analysis on the iJO1366 model with the integrated heterologous lycopene pathway
predicted a maximum theoretical lycopene flux of 1.057 mmol/gDW/h (Table 1). This corre-
sponds to a theoretical yield of 0.106 mol/mol glucose under the assumption that all enzymes
operate at sufficient capacity.

Table 1: Stoichiometric analysis results from Flux Balance Analysis. Maximum
theoretical fluxes predicted for the lycopene biosynthesis pathway under aerobic glucose-limited
conditions.

Metric Reaction/Parameter Value

Lycopene Flux EX_lycopene_c 1.057 mmol/gDW/h
GGPP Synthase Flux CrtE 2.113 mmol/gDW/h
Phytoene Synthase Flux CrtB 1.057 mmol/gDW/h
Phytoene Desaturase Flux CrtI 1.057 mmol/gDW/h
Glucose Uptake EX_glc_D_e 10.0 mmol/gDW/h
Theoretical Yield 0.106 mol/mol glucose
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Notably, the CrtE flux is exactly 2× the downstream fluxes, consistent with the 2:1 stoi-
chiometry of GGPP consumption by CrtB (two GGPP molecules are required to produce one
phytoene molecule).

3.2 Kinetic Parameters: The Reality of Enzyme Catalysis

Figure 2 and Table 2 present the curated kinetic parameters for the MEP and lycopene pathway
enzymes. Kinetic parameterization revealed stark differences between the native MEP pathway
and the heterologous lycopene pathway.

Figure 2: Overview of enzyme kinetic parameters. (A) Comparison of kcat values between
MEP pathway (native) and lycopene pathway (heterologous) enzymes. The heterologous enzymes
exhibit significantly lower turnover numbers. (B) Distribution of Km values across the combined
pathway. (C) Substrate saturation fractions calculated from estimated intracellular metabolite
concentrations.

The three lycopene pathway enzymes exhibited a mean kcat of 0.37/s, nearly 18-fold lower
than the MEP pathway mean of 6.44/s. This disparity immediately suggests that the heterologous
enzymes represent potential kinetic bottlenecks.

Table 2: Enzyme kinetic parameters for the MEP-lycopene pathway. Parameters were
curated from BRENDA and primary literature, prioritizing E. coli or phylogenetically related
sources.

Enzyme Pathway kcat (1/s) Km (m) Saturation (%)

CrtI Lycopene 0.25 0.002 13.0
CrtB Lycopene 0.05 0.005 66.7
CrtE Lycopene 0.80 0.015 28.6
DXS MEP 8.00 0.150 3.3
DXR MEP 1.20 0.080 8.0
IspG MEP 0.50 0.025 24.2
IDI MEP 25.0 0.035 53.3
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3.3 Bottleneck Identification: Severe Limitations in Heterologous Enzymes

Bottleneck analysis revealed that all three heterologous enzymes are severe bottlenecks (Figure 3).
The analysis quantified the gap between FBA-predicted flux demand and enzyme kinetic capacity:

Figure 3: Kinetic bottleneck analysis of the MEP-lycopene pathway. Bottleneck scores
(FBA demand / kinetic capacity) are shown for all enzymes with FBA flux data. The three
heterologous lycopene enzymes (CrtI, CrtB, CrtE) exhibit severe bottlenecks with scores ranging
from 1849 to 6480, representing 1849-fold to 6480-fold capacity deficits. Dashed line indicates
the bottleneck threshold (Bscore = 1); enzymes above this line cannot sustain FBA-predicted
flux at baseline expression.

3.3.1 Phytoene Desaturase (CrtI) — Bottleneck Score: 6480

CrtI emerged as the most severe bottleneck:

• FBA demand: 1.057/ms

• Kinetic capacity: 0.000 163/ms (163/ns)

• Capacity deficit: 6480-fold

• Root cause: Very low kcat (0.25/s) combined with poor substrate saturation (13%)
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3.3.2 Phytoene Synthase (CrtB) — Bottleneck Score: 6339

CrtB exhibited nearly equivalent bottleneck severity:

• FBA demand: 1.057/ms

• Kinetic capacity: 0.000 167/ms (167/ns)

• Capacity deficit: 6339-fold

• Root cause: Extremely low kcat (0.05/s), the lowest in the entire pathway

3.3.3 GGPP Synthase (CrtE) — Bottleneck Score: 1849

CrtE showed a substantial but comparatively lower bottleneck:

• FBA demand: 2.113/ms (2× downstream due to stoichiometry)

• Kinetic capacity: 0.001 143/ms (1.14/µs)

• Capacity deficit: 1849-fold

• Root cause: Moderate kcat (0.80/s) but low substrate saturation (29%)

In contrast, the native MEP pathway enzymes exhibited bottleneck scores less than 1,
indicating sufficient kinetic capacity to support FBA-predicted fluxes at baseline expression
levels.

3.4 Optimization Results: A Robust 1:7:7 Expression Ratio

Multi-objective genetic algorithm optimization identified optimal enzyme expression strategies
across four budget levels (Table 3 and Figure 4).
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Figure 4: Multi-objective optimization results. (A) Pareto-optimal solutions across
four budget levels showing the near-linear relationship between total expression budget and
maximum achievable pathway flux. (B) Resource allocation breakdown demonstrating consistent
∼47%/46%/7% distribution to CrtI/CrtB/CrtE across all budgets. (C) Optimal expression
fold-changes for each enzyme at different budget levels.

Table 3: Optimal expression strategies across budget levels. Results from NSGA-II
multi-objective optimization showing enzyme fold-changes, predicted flux, and improvement
factors.

Budget CrtE CrtB CrtI Flux (1/µs) Improvement Ratio (E:B:I)

20× 1.34× 9.22× 9.44× 1.54 9.4× 1.0 : 6.9 : 7.0
50× 3.37× 23.1× 23.6× 3.84 23.6× 1.0 : 6.8 : 7.0

100× 6.73× 46.1× 47.1× 7.68 47.1× 1.0 : 6.9 : 7.0
150× 10.2× 69.2× 70.7× 11.5 70.7× 1.0 : 6.8 : 7.0
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3.4.1 Key Finding: Budget-Independent Optimal Ratio

Despite 7.5-fold variation in total budget (20× to 150×), the optimal expression ratio remained
remarkably stable at 1:7:7 (CrtE:CrtB:CrtI). This consistency strongly suggests that the ratio
is an intrinsic property of the pathway kinetics rather than an artifact of the optimization
algorithm.

3.4.2 Resource Allocation Pattern

The optimized resource allocation consistently directed:

• CrtI: ∼47% of total resources (highest priority)

• CrtB: ∼46% of resources (second priority)

• CrtE: only ∼7% of resources (lowest priority)

3.4.3 Linear Flux Scaling

Predicted pathway flux scaled approximately linearly with total budget (R2 = 0.9998), indicating
that the pathway remains bottleneck-limited across all tested expression levels. This linearity
implies that even at 150× total overexpression, no single enzyme achieves saturating capacity.

3.4.4 Substantial Flux Improvements

Even at the modest 20× budget, optimization predicts 9.4-fold flux improvement over base-
line. At the 150× budget, 70.7-fold improvement is predicted, yielding 11.5/µs pathway flux—
substantially closing the gap between stoichiometric potential and kinetic reality.

3.5 Mechanistic Interpretation of the 1:7:7 Ratio

The optimized ratio directly reflects the underlying bottleneck scores and enzyme kinetic
properties:

1. CrtI has the worst kinetics (kcat = 0.25/s, 13% saturation) and thus requires the
highest expression to achieve target flux.

2. CrtB has the lowest kcat (0.05/s) but benefits from higher substrate saturation (67%),
partially compensating for its poor turnover number.

3. CrtE has better kinetics (kcat = 0.80/s) but must produce twice the flux of downstream
enzymes due to stoichiometry (2 GGPP → 1 Phytoene). Despite this 2× demand, its
superior kcat means it requires relatively low expression.

The 1:7:7 ratio effectively “equalizes” the capacities of all three enzymes, ensuring that the
pathway flux is limited by the system as a whole rather than a single dominant bottleneck.
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4 Discussion

4.1 Closing the Kinetic-Stoichiometric Gap

This work demonstrates that FBA predictions of lycopene production overestimate achievable
flux by approximately 6000-fold due to kinetic constraints in the heterologous pathway. While
FBA predicts 1.057 mmol/gDW/h (1057/µs), the baseline kinetic capacity is only 0.163/µs. This
massive discrepancy highlights the critical importance of integrating enzyme kinetics into strain
design workflows [5, 6].

Importantly, our optimization framework demonstrates that this gap can be substantially
narrowed through rational enzyme expression tuning. At a 150× total overexpression budget,
the predicted flux of 11.5/µs represents 70.7-fold improvement over baseline—still ∼92-fold
below the FBA prediction, but within a realistic engineering range achievable through standard
molecular biology techniques.

4.2 Robustness of the Optimal Expression Ratio

The striking consistency of the 1:7:7 expression ratio across diverse budget constraints has several
important implications:

4.2.1 Strain Construction Flexibility

Engineers can implement this ratio using various molecular strategies (promoter libraries, plasmid
copy number variation, chromosomal integration with different expression elements) without
needing to precisely match absolute expression levels. The ratio provides a robust target that
accommodates experimental variability.

4.2.2 Transferability Across Conditions

The ratio should remain valid across different E. coli strains and growth conditions, provided
that relative kinetic parameters and substrate concentrations are preserved. This suggests that
the optimization results may generalize beyond the specific conditions modeled.

4.2.3 Diagnostic Value

Deviations from this ratio in experimental implementations would suggest changes in effective
kinetic parameters (e.g., due to metabolic burden, protein aggregation, or post-translational
regulation) and warrant investigation.

4.3 Practical Implementation Strategies

4.3.1 Promoter-Based Approaches

For low-to-medium budgets (≤50×), a three-plasmid system could implement the 1:7:7 ratio:

• CrtE: Weak constitutive promoter (e.g., J23117, ∼5× baseline)

• CrtB: Strong constitutive promoter (e.g., J23100, ∼40× baseline)
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• CrtI: T7 or trc inducible promoter (∼50× baseline at full induction)

4.3.2 Multi-Copy Plasmid Strategies

For high budgets (100–150×), additional copy number control is required:

• CrtE: Low-copy plasmid (pSC101, ∼5 copies) with moderate promoter

• CrtB: Medium-copy plasmid (p15A, ∼15 copies) with strong promoter

• CrtI: High-copy plasmid (ColE1, ∼30 copies) with strong promoter

4.3.3 Hybrid Approaches

Chromosomal integration of CrtE (where low expression is needed) combined with multi-copy
plasmids for CrtB and CrtI would reduce metabolic burden while maintaining the target ratio.

4.4 Validation Strategy

Experimental validation should follow a systematic Design-Build-Test-Learn approach:

1. Construct ratio variants: Build strains with expression ratios spanning 1:5:5 to 1:10:10,
with the predicted optimum (1:7:7) at the center.

2. Measure lycopene production: Quantify lycopene titers using HPLC or spectrophoto-
metric assays across the ratio series.

3. Metabolomic profiling: Measure intermediate concentrations (GGPP, phytoene) to
validate flux predictions and identify any remaining bottlenecks.

4. Kinetic parameter verification: If experimental flux deviates substantially from
predictions, re-measure kcat and Km values in vivo using enzyme assays or 13C-metabolic
flux analysis.

5. Iterative refinement: Use experimental data to update the kinetic model and re-optimize,
implementing a true Design-Build-Test-Learn cycle.

4.5 Limitations and Future Directions

4.5.1 Model Assumptions

Our model incorporates several simplifying assumptions that should be addressed in future work:

1. Linear expression-activity relationship: We assume enzyme activity scales linearly
with expression level. In reality, high overexpression can lead to protein aggregation,
reducing effective activity.

2. Static kinetic parameters: kcat and Km are assumed constant, but may vary with
intracellular conditions (pH, ionic strength, metabolite concentrations).
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3. Independent enzymes: We do not account for enzyme-enzyme interactions, protein
complexes, or substrate channeling, which could alter effective kinetics.

4. No metabolic burden: The optimization does not penalize high expression levels for
their impact on growth rate or cellular fitness. In practice, a 150× total overexpression
may impose significant burden.

5. Fixed substrate concentrations: We use estimated steady-state concentrations, but
these will change as pathway flux increases.

4.5.2 Recommended Extensions

Future development should address these limitations through:

1. Dynamic flux balance analysis (dFBA): Integrate time-dependent growth kinetics to
assess trade-offs between production and growth.

2. Metabolic burden modeling: Incorporate resource allocation constraints (ribosome,
ATP, amino acid availability) to predict fitness costs [16].

3. Enzyme engineering integration: Use the bottleneck scores to prioritize targets for
directed evolution (CrtI and CrtB are clear candidates for kcat improvement).

4. Regulatory network integration: Extend the model to include transcriptional regulation
(e.g., feedback inhibition by isoprenoids) and post-translational modifications.

5. Multi-objective optimization: Balance lycopene production with growth rate, strain
stability, and precursor supply for industrially relevant objectives.

5 Conclusion

We have demonstrated an integrated kinetic-stoichiometric framework that bridges the gap
between theoretical flux predictions and experimental reality in metabolic engineering. By sys-
tematically combining genome-scale FBA with enzyme kinetics, we identified severe bottlenecks
in the heterologous lycopene biosynthesis pathway that would be invisible to stoichiometric anal-
ysis alone. Multi-objective optimization revealed a robust 1:7:7 expression ratio (CrtE:CrtB:CrtI)
that remains optimal across diverse resource budgets and predicts substantial flux improvements
(9–71 fold) over baseline.

This work provides three key contributions to the field of metabolic engineering:

1. Diagnostic framework: A generalizable method to identify true kinetic bottlenecks by
quantitatively comparing enzyme capacities to FBA flux demands.

2. Engineering roadmap: Specific, actionable expression targets for lycopene production
that can guide experimental strain construction.
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3. Validation of approach: Demonstration that kinetic-stoichiometric integration yields
robust, budget-independent optimization solutions—a critical feature for practical imple-
mentation.

Moving forward, this framework can be extended to other heterologous pathways and inte-
grated with enzyme engineering, regulatory network modeling, and metabolic burden constraints
to create a comprehensive computational platform for next-generation metabolic engineering.
The identification of the 1:7:7 ratio provides a clear starting point for experimental validation,
with the potential to substantially improve lycopene titers in engineered E. coli strains.

Data Availability

All data and analysis scripts are available in the project repository:

• FBA results: results/fba_summary.txt and results/fba_fluxes.csv

• Kinetic parameters: results/kinetic_data_summary.txt

• Bottleneck analysis: results/bottleneck_summary.txt and results/bottleneck_analysis.csv

• Optimization results: results/optimization_summary.txt and results/optimization_results.csv

Code Availability

Analysis code was implemented in Python 3.12 using:

• COBRApy v0.29.0 (FBA)

• NumPy v1.26.3 (numerical operations)

• Pandas v2.1.4 (data manipulation)

• Matplotlib v3.8.2 (visualization)

• PyMOO v0.6.1 (optimization)
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