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Abstract

Background: Drug-induced toxicity remains a leading cause of attrition in pharmaceu-
tical development, with safety-related failures accounting for approximately 30% of clinical
trial terminations. Computational approaches for early toxicity prediction can significantly
reduce development costs and improve candidate selection.

Methods: We developed a machine learning pipeline using the Tox21 high-throughput
screening dataset comprising 6,258 compounds with hepatotoxicity-related assay outcomes.
Molecular structures were encoded using Morgan circular fingerprints (2,048 bits, radius
2) via RDKit. An XGBoost classifier was trained with stratified 5-fold cross-validation to
address class imbalance (7.8:1 ratio). Model interpretability was achieved through SHAP
(SHapley Additive exPlanations) analysis to identify toxicity-driving substructures.

Results: The model achieved robust predictive performance with mean ROC-AUC
of 0.856 + 0.027 across cross-validation folds. Application to five proprietary lead com-
pounds revealed LEAD 002 as the lowest-risk candidate (toxicity probability: 7.8%) and
LEAD_ 005 as highest-risk (33.4%). SHAP analysis identified the quinazolinone core in
LEAD 005 as the primary toxicity driver, with fingerprint bits encoding nitrogen-containing
heterocyclic patterns contributing most substantially to elevated predictions.

Conclusions: This work demonstrates the utility of interpretable machine learning for
early-stage drug de-risking. The combination of robust classification performance with mech-
anistic interpretability through SHAP enables actionable guidance for medicinal chemistry
optimization. Integration of such computational toxicity assessments into drug discovery
workflows can prioritize safer candidates while reducing reliance on animal models.

Keywords: Predictive toxicology; XGBoost; SHAP values; Morgan fingerprints; Drug dis-
covery; Tox21; Hepatotoxicity

1 Introduction

The pharmaceutical industry faces a persistent challenge in drug development: approximately
30% of drug candidates fail during clinical trials due to safety concerns, with hepatotoxicity
representing one of the most common causes of withdrawal (Kola and Landis, 2004; Waring
et al., 2015). This high attrition rate translates to substantial financial losses, with estimates
suggesting that each failed drug candidate costs between $800 million and $1.4 billion when
accounting for opportunity costs and development expenses. Furthermore, unexpected toxicity
in later stages of development raises ethical concerns regarding patient safety in clinical trials.
Early-stage computational toxicity prediction offers a promising strategy for de-risking drug
discovery pipelines by identifying potentially hazardous compounds before committing to expen-
sive in vivo studies. Machine learning approaches, in particular, have demonstrated significant



utility in predicting various toxicity endpoints from molecular structure alone (Mayr et al., 2016;
Wu et al., 2018). These methods can rapidly screen virtual compound libraries and prioritize
candidates with favorable safety profiles, thereby reducing both development costs and time-to-
market.

The Toxicology in the 21st Century (Tox21) program represents a landmark initiative in
computational toxicology, providing high-throughput screening data across multiple toxicity
endpoints for thousands of environmental chemicals and pharmaceutical compounds (Lynch
et al., 2024; Huang et al., 2016). The program, a collaboration between the National Institutes of
Health (NIH), Environmental Protection Agency (EPA), Food and Drug Administration (FDA),
and National Toxicology Program (NTP), has generated quantitative high-throughput screening
(qHTS) data across more than 70 assays targeting nuclear receptors, stress response pathways,
and cellular toxicity markers (Richard et al., 2016). These datasets enable the development and
validation of predictive models that can extrapolate learned structure-activity relationships to
novel compounds.

Molecular fingerprints serve as the foundation for structure-based toxicity prediction, encod-
ing chemical structures as numerical feature vectors amenable to machine learning algorithms.
Morgan fingerprints, also known as Extended Connectivity Fingerprints (ECFP), have emerged
as a particularly effective representation for toxicity prediction (Rogers and Hahn, 2010). These
circular fingerprints encode atomic environments by iteratively expanding neighborhood radii,
capturing both local and extended structural features that correlate with biological activity and
toxicity (Kim et al., 2024; Banerjee et al., 2021).

Among machine learning algorithms, gradient boosting methods—particularly XGBoost—have
demonstrated strong performance on toxicity prediction tasks, especially when dealing with the
class imbalance characteristic of toxicity datasets where active (toxic) compounds represent a
small minority (Chen and Guestrin, 2016; de la Vega-Corredor et al., 2025). The built-in han-
dling of class imbalance through sample weighting, combined with regularization mechanisms
that prevent overfitting, makes XGBoost well-suited for toxicity classification where false nega-
tives (missed toxic compounds) carry substantial downstream consequences.

Beyond accurate prediction, understanding why a model predicts a compound as toxic is
crucial for guiding medicinal chemistry optimization. SHAP (SHapley Additive exPlanations)
values provide a theoretically grounded framework for model interpretation based on coalitional
game theory (Lundberg and Lee, 2017). By quantifying each feature’s contribution to moving a
prediction from the baseline to the actual output, SHAP analysis enables identification of specific
molecular substructures driving toxicity predictions (Seal and Mahale, 2025; Bai et al., 2025).
This mechanistic interpretability transforms black-box predictions into actionable insights for
structural modification.

In this study, we present a comprehensive machine learning pipeline for hepatotoxicity predic-
tion using Tox21 data, with application to five proprietary lead compounds under consideration
for advancement in a drug discovery program. Our objectives were threefold: (1) develop a
robust XGBoost classifier with validated performance metrics, (2) generate toxicity probabil-
ity scores for lead compound prioritization, and (3) identify structural features responsible for
elevated toxicity risk using SHAP analysis. This integrated approach demonstrates how com-
putational toxicology can inform early-stage decision-making in pharmaceutical research and
development.

2 Methods

2.1 Data Acquisition and Preprocessing

Training data were obtained from the Tox21 program via the PubChem database (AID 743122),
focusing on the SR-MMP (stress response mitochondrial membrane potential) assay as a proxy



for hepatotoxicity-related cellular stress. The mitochondrial membrane potential assay captures
compounds that disrupt mitochondrial function, a mechanism implicated in drug-induced liver
injury (He et al., 2024; Lee and Posma, 2025).

The dataset comprised 6,258 compounds with experimentally determined binary activity
labels. Class distribution was highly imbalanced, with 5,547 (88.6%) negative (non-toxic) com-
pounds and 711 (11.4%) positive (toxic) compounds, yielding an imbalance ratio of 7.8:1. All
compounds were provided as SMILES (Simplified Molecular Input Line Entry System) strings,
which were validated for chemical structure integrity prior to featurization.

Five proprietary lead compounds (designated LEAD 001 through LEAD 005) were pro-
vided by the R&D team for toxicity assessment. These compounds represent diverse chemical
scaffolds under consideration for advancement, with SMILES representations listed in Table 1.

Table 1: Lead Compounds Under Evaluation

Compound SMILES

LEAD_001  CC(C)NCC(0)COclcccecl

LEAD 002 CN1CCN(CC1)c2ccc(DCC3CCCO3)cc2
LEAD 003 0=C(0)CCCCclccc(cecl)C(C)C

LEAD 004 CN1CCN(CC1)CCc2c[nH]c3cccce23
LEAD 005 COclccc(ccl)C2=Nc3ccecce3N(C2=0)CC

2.2 Molecular Featurization

Molecular structures were converted to numerical feature vectors using Morgan circular finger-
prints, implemented via the RDKit library (version 2023.9.1) (Rogers and Hahn, 2010). Finger-
print parameters were selected based on established best practices for toxicity prediction:

e Radius: 2 (equivalent to ECFP4)
e Number of bits: 2,048

e Implementation: Al11Chem.GetMorganFingerprintAsBitVect

Morgan fingerprints encode circular atomic environments by hashing atom-centered sub-
structures up to the specified radius. Each bit in the resulting vector indicates the presence (1)
or absence (0) of specific substructural patterns. This representation captures both local chemi-
cal features (functional groups, heteroatoms) and extended connectivity patterns (ring systems,
linker motifs) relevant to biological activity and toxicity (Kim et al., 2024).

2.3 Model Architecture and Training

XGBoost (eXtreme Gradient Boosting) was selected as the classification algorithm based on its
demonstrated performance on imbalanced toxicity prediction tasks (Chen and Guestrin, 2016;
de la Vega-Corredor et al., 2025; Al-Jubouri et al., 2025). The algorithm constructs an ensemble
of decision trees through iterative gradient descent optimization, with built-in regularization to
prevent overfitting.

Model hyperparameters were configured as follows:



Table 2: XGBoost Hyperparameter Configuration

Parameter Value
n_estimators 100
max_depth 6
learning rate 0.1
subsample 0.8

colsample bytree 0.8
scale _pos weight 7.80

objective binary:logistic
eval metric AUC
random _state 42

The scale_pos_weight parameter was set equal to the class imbalance ratio (7.80) to address
the disparity between toxic and non-toxic compounds by upweighting the minority class during
training. This approach has been shown to improve sensitivity for toxic compound detection
without requiring synthetic oversampling (Al-Jubouri et al., 2025).

2.4 Cross-Validation Strategy

Model performance was evaluated using stratified 5-fold cross-validation to ensure robust perfor-
mance estimates and proper class balance across all folds. Stratification preserved the original
class distribution (88.6%/11.4%) within each fold, preventing bias from uneven class represen-
tation.

Performance metrics computed across all folds included:

e ROC-AUC: Area under the receiver operating characteristic curve, measuring discrimi-
native ability across all classification thresholds

e Precision: Proportion of predicted toxic compounds that are truly toxic

Recall (Sensitivity): Proportion of truly toxic compounds correctly identified
e F1-Score: Harmonic mean of precision and recall

e Accuracy: Overall classification accuracy

2.5 Model Interpretability Analysis

For the highest-risk compound (LEAD 005), SHAP analysis was performed using the Tree-
Explainer algorithm, which provides exact Shapley value computations for tree-based models
(Lundberg and Lee, 2017). This analysis quantified the contribution of each fingerprint bit
(molecular substructure) to the predicted toxicity probability.

The SHAP analysis workflow comprised:

1. Base value computation: The expected model output (mean predicted probability
across training data) served as the baseline for attribution.

2. SHAP value calculation: For each fingerprint bit, the contribution to moving the
prediction from the base value to the final output was computed.

3. Feature ranking: Bits were ranked by absolute SHAP value magnitude to identify the
most influential substructures.



4. Structural visualization: RDKit’s substructure highlighting functionality was used to
map high-importance fingerprint bits back to specific atoms and bonds within the molec-
ular structure.

2.6 Computational Environment

All analyses were conducted using Python 3.124 with the following key dependencies: RDKit
2023.9.1 (molecular featurization), XGBoost 2.0.3 (model training), scikit-learn 1.4.0 (metrics
and cross-validation), SHAP 0.50.0 (model interpretation), pandas 2.2.0 (data manipulation),
and NumPy 1.26.3 (numerical operations). Random seeds were fixed to 42 for reproducibility.

3 Results

3.1 Predictive Toxicology Workflow

Figure 1 illustrates the complete machine learning pipeline implemented in this study, from
chemical structure input through Morgan fingerprint generation, XGBoost classification, and
SHAP-based structural interpretation.
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Figure 1: Predictive toxicology workflow. Chemical structures (SMILES notation) are
converted to Morgan circular fingerprints (2,048 bits) via RDKit, which capture substructural
features through circular topology encoding. The XGBoost classifier, trained with 5-fold cross-
validation on Tox21 data, generates toxicity probability scores. For high-risk compounds, SHAP
analysis identifies specific fingerprint bits (molecular substructures) driving the prediction, en-
abling structural interpretation of toxicity risk.

3.2 Model Performance

The XGBoost classifier demonstrated robust and consistent performance across all five cross-
validation folds (Table 3). The primary metric, ROC-AUC, achieved a mean of 0.856 + 0.027,
indicating strong discriminative ability to separate toxic from non-toxic compounds across all
classification thresholds.



Table 3: Cross-Validation Performance Metrics

Metric Mean Std Dev Range

ROC-AUC 0.856 0.027 0.807-0.889
Precision 0.409 0.035 0.358-0.467
Recall 0.684 0.061 0.580-0.746
F1-Score 0.512 0.043 0.443-0.575
Accuracy 0.852 0.013 0.833-0.875

The ROC curve (Figure 2) visualizes the trade-off between true positive rate (sensitivity)
and false positive rate (1 - specificity) across classification thresholds. The curve demonstrates
substantial improvement over random classification (diagonal) and achieves high sensitivity at
relatively low false positive rates—a critical characteristic for toxicity screening where missed
toxic compounds carry significant downstream consequences.

Receiver Operating Characteristic (ROC) Curve
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Figure 2: Receiver Operating Characteristic (ROC) curve from 5-fold cross-
validation. The curve demonstrates strong discriminative performance with mean AUC =
0.856. Shaded region indicates standard deviation across folds. The model achieves approx-
imately 70% sensitivity at 20% false positive rate, suitable for early-stage toxicity screening
where false negatives must be minimized.

The recall of 0.684 indicates that the model correctly identifies approximately 68% of truly
toxic compounds—a critical metric for safety screening where false negatives represent poten-
tially dangerous candidates advancing through the pipeline. While precision (0.409) reflects the
challenge of the highly imbalanced dataset, this performance level is appropriate for compound
prioritization where subsequent experimental validation will confirm predictions.

3.3 Lead Compound Assessment

All five lead compounds were evaluated using the trained model, with results presented in
Table 4. Toxicity probabilities represent the model’s confidence that each compound belongs to
the toxic class, enabling risk stratification beyond binary classification.



Table 4: Toxicity Assessment of Lead Compounds

ID SMILES P (Toxic) Risk Label

LEAD 002 CN1CCN(CC1)c2cec(OCC3CCCO3)cc2 0.078 Low Non-Toxic
LEAD 003 O=C(0)CCCCeclece(cel)C(C)C 0.093 Low Non-Toxic
LEAD 004 CN1CCN(CC1)CCc2¢|nH]|c3ccecc23 0.155 Moderate Non-Toxic
LEAD 001 CC(C)NCC(0O)COclcceecl 0.176 Moderate Non-Toxic
LEAD 005 COclece(cel)C2=Nec3ceceec3N(C2=0)CC 0.334 High Non-Toxic

Key findings:

e LEAD 002 exhibits the lowest toxicity risk (7.8% probability), making it the most favor-
able candidate from a safety perspective. Its piperazine-linked tetrahydrofuran-substituted
phenyl structure suggests favorable metabolic stability.

e LEAD 005 shows the highest toxicity risk (33.4% probability), warranting structural
optimization or deprioritization. This probability is 2.4 x higher than the training set base
rate (13.7%), indicating elevated risk relative to typical compounds.

e While all compounds are predicted as “Non-Toxic” using the standard 0.5 threshold, the
continuous probability scores provide nuanced risk stratification essential for decision-
making.

3.4 Structural Interpretation of LEAD 005 Toxicity Risk

To understand the molecular basis of LEAD 005’s elevated toxicity score, we performed com-
prehensive SHAP analysis. Figure 3 presents the structural interpretation highlighting substruc-
tures responsible for the elevated prediction.

LEAD_005: Structural Features Contributing to Toxicity Risk
LEAD_005 Bit 1912 it Bit 1380
Toxicity? 0.334 SHAP: 03367 SHAP: 0.2027 SHAP: 01746

Figure 3: SHAP-based structural interpretation for LEAD 005. Panel shows the molec-
ular structure with atoms contributing to toxicity prediction highlighted in red (positive SHAP
contribution) and protective features in blue (negative contribution). The quinazolinone core
(benzene-fused heterocyclic system) is identified as the primary toxicity driver.

SHAP Analysis Summary:

e Base value (expected toxicity): 0.137 (13.7%)

e LEAD 005 prediction: 0.334 (33.4%)

e Net SHAP contribution: +0.197 (19.7 percentage points above baseline)

Table 5 presents the top five fingerprint bits contributing to LEAD 005’s elevated toxicity
prediction.



Table 5: Top Contributing Fingerprint Bits for LEAD 005

Bit Index SHAP Value Feature Value Interpretation
1912 +0.337 1 Highest toxicity driver
45 +0.203 1 Aromatic substitution pattern
1380 +0.175 1 Heteroatom environment
1873 +0.139 1 Extended conjugation
34 +0.072 1 Nitrogen heterocycle

All five top-contributing bits are present (feature value = 1) in LEAD 005’s structure, rep-
resenting learned structural patterns the model associates with increased toxicity risk. Figure 4
shows the substructure visualizations for the three highest-contributing bits.

) N/—’d ) N/—’d ) N/’—

(a) Bit 1912 (SHAP: +0.337) (b) Bit 45 (SHAP: +0.203) (c) Bit 1380 (SHAP: +0.175)

Figure 4: Substructure visualization for top-contributing fingerprint bits. Red
highlighting indicates atoms/bonds corresponding to each fingerprint bit. (a) Bit 1912 cap-
tures the quinazolinone core; (b) Bit 45 encodes aromatic substitution patterns including the
methoxyphenyl group; (c¢) Bit 1380 represents nitrogen-rich heteroatom environments.

Structural Features of Concern:

LEAD 005 contains a quinazolinone core—a benzene-fused heterocyclic system featuring
an N=C-N-C=0 motif—with a methoxy-substituted phenyl ring at position 2 and an N-ethyl
substituent at position 3. The SHAP analysis reveals that:

1. Bit 1912 (SHAP: +0.337): Encodes the quinazolinone core or related nitrogen-containing
heterocyclic patterns. This substructure appears to be the primary toxicity driver.

2. Bit 45 (SHAP: +0.203): Captures aromatic substitution patterns, likely including the
methoxyphenyl moiety known to undergo metabolic activation.

3. Bit 1380 (SHAP: +0.175): Represents heteroatom-rich environments, potentially encod-
ing the lactam carbonyl and imine nitrogen arrangement.

4 Discussion

4.1 Model Performance in Context

The XGBoost model achieved an ROC-AUC of 0.856, consistent with published benchmarks for
Tox21-based toxicity prediction where typical performance ranges from 0.75-0.90 (Mayr et al.,
2016; Kim et al., 2024). This performance level demonstrates that the model has captured



meaningful structure-toxicity relationships suitable for compound prioritization in early discov-
ery. The cross-validation consistency (standard deviation 0.027) indicates robust generalization
rather than overfitting to specific data subsets.

Our results align with recent comparative studies demonstrating that traditional machine
learning methods (XGBoost, Random Forest) achieve competitive performance with more com-
plex deep learning architectures on molecular property prediction tasks, while offering substan-
tially better interpretability (Kim et al., 2024; de la Vega-Corredor et al., 2025). For toxicity
prediction specifically, the ability to trace predictions back to specific structural features repre-
sents a critical advantage over black-box methods, enabling the optimization cycle essential to
medicinal chemistry.

The precision-recall trade-off observed (precision 0.41, recall 0.68) reflects the fundamental
challenge of predicting rare events in imbalanced datasets (Al-Jubouri et al., 2025). In the
context of toxicity screening, the relatively high recall indicates that most truly toxic compounds
are flagged for follow-up, while the moderate precision suggests that approximately 60% of
flagged compounds may be false positives. This conservative strategy is appropriate for early-
stage screening where the cost of advancing a toxic compound substantially exceeds the cost of
additional experimental validation for flagged candidates.

4.2 Mechanistic Interpretation of LEAD 005 Toxicity

The SHAP analysis identified the quinazolinone core as the primary driver of LEAD 005’s
elevated toxicity prediction. Quinazolinone derivatives have been extensively studied in medici-
nal chemistry due to their broad pharmacological activities, including kinase inhibition, GPCR
modulation, and antiproliferative effects (Khan et al., 2020). However, this pharmacological
promiscuity also underlies potential toxicity mechanisms.

Several plausible toxicological hypotheses emerge from the structural interpretation:

1. Off-target kinase inhibition: Quinazolinones are established kinase scaffolds, and non-
selective kinase inhibition can trigger apoptotic pathways in hepatocytes, manifesting as
mitochondrial membrane depolarization in the SR-MMP assay.

2. Metabolic bioactivation: The methoxyphenyl substituent may undergo CYP450-mediated
O-demethylation followed by oxidation to a reactive quinone intermediate capable of form-
ing covalent protein adducts—a mechanism implicated in idiosyncratic drug-induced liver
injury (Bergen et al., 2025).

3. Nuclear receptor interference: Tox21 assays include nuclear receptor panels, and
quinazolinone derivatives have demonstrated PXR/CAR activation, which can alter hep-
atic drug metabolism and potentiate toxicity (Lynch et al., 2024).

These mechanistic hypotheses provide actionable direction for medicinal chemistry optimiza-
tion: modifications to the quinazolinone core (bioisosteric replacement), blocking metabolically
labile positions (e.g., replacing methoxy with fluorine), or introducing structural constraints
to improve kinase selectivity could potentially reduce toxicity while maintaining therapeutic
activity.

4.3 Implications for Lead Optimization

The risk stratification across all five lead compounds enables evidence-based decision-making for
pipeline advancement:

LEAD 002 (Recommended for advancement): With the lowest toxicity probability
(7.8%), LEAD 002 represents the most favorable safety profile. Its piperazine-linked struc-
ture with a tetrahydrofuran-substituted phenyl group suggests a distinct mechanism of action
compared to LEAD 005, potentially with more selective target engagement.



LEAD 005 (Proceed with caution): Despite the elevated toxicity probability (33.4%),
LEAD 005 need not be immediately discarded if it demonstrates superior efficacy or target
engagement. The structural interpretation provides a roadmap for optimization:

e Core scaffold modification: Replace quinazolinone with alternative heterocycles (e.g.,
quinoline, benzimidazole) lacking the reactive lactam carbonyl

e Substituent optimization: Replace methoxyphenyl with trifluoromethylphenyl or other
metabolically stable groups

e Analog synthesis: Prepare a focused library modifying the N-ethyl position to assess
structure-toxicity relationships

4.4 Limitations and Future Directions

Several limitations of this study warrant consideration:

1. Single endpoint aggregation: The model aggregates multiple Tox21 assay outcomes
into a single toxicity label, potentially obscuring endpoint-specific toxicity mechanisms.
Future work could develop multi-task models that separately predict each assay outcome
(Chen et al., 2024).

2. Applicability domain: Predictions for compounds structurally dissimilar to the Tox21
training set may be unreliable. Implementing applicability domain assessment (e.g., via
molecular similarity to training compounds) would provide confidence bounds on predic-
tions.

3. In vitro to in vivo extrapolation: Tox21 assays are cell-based screens that may not
capture complex in vivo toxicology including absorption, distribution, metabolism, ex-
cretion, and immune-mediated responses. Integration with pharmacokinetic predictions
would improve clinical relevance (Liu et al., 2025).

4. Class imbalance: Despite mitigation through scale pos weight, the 7.8:1 imbalance
limits precision. Advanced techniques such as SMOTE oversampling or cost-sensitive
ensembles could further improve minority class detection (de la Vega-Corredor et al., 2025).

4.5 Integration with Drug Discovery Workflows

Computational toxicity prediction achieves maximum impact when integrated with complemen-
tary in silico and experimental approaches:

e ADMET predictions: Combine with solubility, permeability, and metabolic stability
models for holistic candidate assessment

e Target activity assays: Ensure structural modifications for safety do not abolish ther-
apeutic activity

e Broader toxicity profiling: Expand to hERG cardiotoxicity, CYP450 inhibition, and
genotoxicity endpoints (Banerjee et al., 2021)

¢ Experimental validation: Confirm computational predictions with in vitro hepatotox-
icity assays (e.g., HepG2 viability, primary hepatocyte cultures)

The workflow presented here aligns with emerging regulatory frameworks emphasizing New
Approach Methodologies (NAMs) and the 3Rs principles (Replacement, Reduction, Refinement)
for reducing animal testing while maintaining safety assessment rigor.
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5 Conclusions

This study demonstrates the utility of interpretable machine learning for early-stage drug toxicity
assessment. We developed an XGBoost classifier achieving ROC-AUC of 0.856 on the Tox21
hepatotoxicity dataset and applied it to prioritize five lead compounds. Our key contributions
include:

1. Robust prediction model: The XGBoost classifier with Morgan fingerprints provides
reliable toxicity probability scores suitable for compound prioritization.

2. Evidence-based lead prioritization: LEAD 002 emerges as the safest candidate (7.8%
toxicity probability) while LEAD 005 presents elevated risk (33.4%).

3. Mechanistic interpretability: SHAP analysis identified the quinazolinone core in LEAD 005
as the primary toxicity driver, providing actionable guidance for medicinal chemistry op-
timization.

4. Translational relevance: The pipeline integrates seamlessly with drug discovery work-
flows, supporting the 3Rs principles and New Approach Methodologies.

Final Recommendation: Advance LEAD 002 as the primary development candidate
while conducting structure-activity relationship studies on LEAD 005 analogs with modified
heterocyclic cores to reduce toxicity risk. This balanced approach maximizes the probability of
identifying safe, effective therapeutic candidates while minimizing late-stage attrition.

Data Availability

The Tox21 training data are publicly available through the PubChem database (AID 743122).
Model code, trained parameters, and SHAP analysis outputs are available in the project repos-
itory. Proprietary lead compound structures are subject to confidentiality agreements.
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