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Figure 1: Graphical Abstract. Overview of the NGS variant calling ecosystem in clinical
practice. The workflow illustrates the three primary variant calling domains—germline, so-
matic, and structural/copy number variants—each requiring specialized bioinformatics tools
and validation strategies. All pathways converge through ACMG/AMP classification frame-
works before integration into clinical reporting and electronic health record systems.

Abstract

Next-generation sequencing (NGS) has transformed clinical diagnostics, enabling compre-
hensive detection of genetic variants underlying inherited disorders and cancer. Central
to the clinical utility of NGS is the accuracy and reliability of variant calling algorithms,
which translate raw sequencing data into actionable genetic findings. This review provides
a comprehensive examination of the current state of the art in NGS variant calling for
clinical applications, addressing germline variant detection for constitutional disorders, so-
matic variant identification in oncology, and the emerging challenge of structural variant
and copy number variation analysis. We evaluate leading variant calling tools including
GATK HaplotypeCaller, DeepVariant, Mutect2, Strelka2, Manta, and DELLY, analyzing
their performance characteristics, clinical sensitivity and specificity, and suitability for dif-
ferent clinical contexts. Special attention is given to the integration of artificial intelligence
and deep learning approaches, which have demonstrated significant improvements in vari-
ant calling accuracy. We synthesize current regulatory frameworks including ACMG/AMP
guidelines and CAP/CLIA requirements for clinical validation, providing practical guidance
for laboratory implementation. Technical challenges including low variant allele frequency
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detection, tumor heterogeneity management, and complex genomic region analysis are dis-
cussed alongside emerging solutions. Finally, we address practical considerations for clinical
pipeline validation, reproducibility assurance, and laboratory information system integra-
tion. This review serves as a resource for clinical geneticists, molecular pathologists, and
laboratory directors seeking to implement or optimize NGS variant calling workflows in
clinical diagnostic settings.

Keywords: next-generation sequencing, variant calling, clinical genomics, DeepVariant,
GATK, somatic mutations, structural variants, ACMG guidelines, precision medicine
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1 Introduction
The advent of next-generation sequencing (NGS) technologies has fundamentally transformed
the landscape of clinical molecular diagnostics, enabling unprecedented access to comprehensive
genomic information for patient care [Goodwin et al., 2016, Shendure et al., 2017]. Over the
past decade, NGS has evolved from a research tool to a cornerstone of precision medicine, with
applications spanning inherited disease diagnosis, pharmacogenomics, oncology, and infectious
disease management [Mardis, 2019]. The democratization of genomic sequencing, driven by
dramatic reductions in cost and turnaround time, has made whole-exome sequencing (WES)
and targeted gene panel testing routine components of clinical care in many healthcare systems
worldwide.

At the heart of any NGS-based clinical assay lies the bioinformatics pipeline responsible for
transforming raw sequencing reads into clinically interpretable variant calls. Variant calling—
the computational process of identifying positions in the genome where an individual differs
from the reference sequence—represents a critical bottleneck in the translation of sequencing
data to clinical action [Yohe and Thyagarajan, 2017]. The accuracy, sensitivity, and specificity
of variant calling directly impact diagnostic yield, with false negatives potentially resulting in
missed diagnoses and false positives leading to unnecessary clinical interventions or patient
anxiety. Given these high stakes, the selection and validation of variant calling algorithms for
clinical use demands rigorous attention to analytical performance characteristics and regulatory
compliance.

The variant calling landscape has undergone substantial evolution since the introduction of
early statistical methods. Traditional approaches, exemplified by the Genome Analysis Toolkit
(GATK) developed at the Broad Institute, employ probabilistic models incorporating base
quality scores, mapping quality, and local sequence context to distinguish true variants from se-
quencing artifacts [McKenna et al., 2010, DePristo et al., 2011]. These methods have established
strong track records in clinical laboratories, with GATK HaplotypeCaller achieving F-scores ex-
ceeding 0.99 in benchmark evaluations for germline single nucleotide variants (SNVs) and small
insertions/deletions (indels) [Krusche et al., 2019]. However, the emergence of deep learning-
based variant callers, most notably Google’s DeepVariant, has challenged the supremacy of
classical statistical methods [Poplin et al., 2018]. By reformulating variant calling as an image
classification problem, where pileup visualizations of aligned reads are processed through con-
volutional neural networks, DeepVariant has demonstrated superior performance in multiple
benchmarking challenges, including the FDA-sponsored precisionFDA Truth Challenge [Olson
et al., 2022].

The clinical variant calling ecosystem must address fundamentally different biological and tech-
nical challenges depending on the application domain. Germline variant calling, focused on
identifying inherited constitutional variants, benefits from the expectation that true variants
will be present at approximately 50% (heterozygous) or 100% (homozygous) variant allele fre-
quency (VAF). In contrast, somatic variant calling in oncology must contend with tumor het-
erogeneity, variable tumor purity, and the detection of subclonal mutations present at VAFs
as low as 1-5% or even lower in liquid biopsy applications [Cibulskis et al., 2013, Wan et al.,
2017]. Structural variant (SV) detection, including large deletions, duplications, inversions, and
translocations, presents yet another set of challenges, requiring algorithms capable of integrat-
ing multiple signals including discordant read pairs, split reads, and read depth changes [Chen
et al., 2016, Rausch et al., 2012].

Regulatory and professional standards provide essential frameworks for clinical implementation
of NGS variant calling. The American College of Medical Genetics and Genomics (ACMG) and
the Association for Molecular Pathology (AMP) have established joint guidelines for variant in-
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terpretation that have become the de facto standard in clinical genetics laboratories [Richards
et al., 2015]. Complementary standards for somatic variant interpretation have been devel-
oped through collaboration between AMP, the American Society of Clinical Oncology (ASCO),
and the College of American Pathologists (CAP) [Li et al., 2017]. The AMP and CAP have
also published joint recommendations for validating NGS bioinformatics pipelines, providing a
roadmap for clinical laboratories seeking to establish robust, reproducible workflows [Roy et al.,
2018].

This review aims to provide clinical geneticists, molecular pathologists, and laboratory direc-
tors with a comprehensive overview of the current state of the art in NGS variant calling for
clinical practice. We examine the leading tools for germline, somatic, and structural variant
detection, evaluating their performance characteristics and clinical applicability. We synthesize
current regulatory requirements and validation frameworks, addressing practical considerations
for pipeline implementation. Finally, we discuss emerging trends including the integration of
artificial intelligence, long-read sequencing technologies, and the challenges of laboratory infor-
mation system integration in an era of increasing genomic data complexity.

Figure 2: Clinical NGS variant calling workflow. Comprehensive overview of the clinical
NGS pipeline from sample collection through final clinical reporting. The workflow encom-
passes wet lab processes (sample collection, DNA extraction, library preparation, sequencing)
and bioinformatics analysis (read alignment, variant calling across germline, somatic, and struc-
tural variant domains, annotation, and classification). Integration with laboratory information
systems (LIS) and electronic health records (EHR) enables seamless clinical reporting.

2 Regulatory Frameworks and Clinical Guidelines

2.1 ACMG/AMP Standards for Germline Variant Interpretation

The 2015 ACMG/AMP standards for interpretation of sequence variants represent a land-
mark consensus document that has fundamentally shaped clinical variant classification practices
[Richards et al., 2015]. This framework establishes a five-tier classification system—pathogenic,
likely pathogenic, uncertain significance, likely benign, and benign—based on the systematic
evaluation of multiple lines of evidence. The guidelines provide 28 criteria organized into cat-
egories of evidence supporting pathogenicity (very strong, strong, moderate, supporting) and
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evidence supporting benign classification, with rules for combining evidence to reach final clas-
sifications.

The implementation of ACMG/AMP criteria requires integration of diverse data sources includ-
ing population frequency databases such as gnomAD [Karczewski et al., 2020], computational
predictions of variant impact, functional studies, segregation data in affected families, and de
novo occurrence. The Clinical Genome Resource (ClinGen), a National Institutes of Health-
funded initiative, has played a central role in refining these standards through the development of
gene-specific and disease-specific variant curation expert panels (VCEPs) that provide detailed
specifications for applying ACMG/AMP criteria to particular genes [Rehm et al., 2015]. These
specifications address ambiguities in the original guidelines and provide quantitative thresholds
tailored to the biology of individual genes.

ClinVar, the public archive of relationships among human genetic variants and phenotypes,
serves as a critical repository for variant classifications [Landrum et al., 2018]. Clinical labo-
ratories routinely query ClinVar during variant interpretation, and many contribute their own
classifications, creating a collaborative ecosystem that continuously refines variant knowledge.
However, inter-laboratory discordance in variant classification remains a significant challenge,
with studies demonstrating that a substantial proportion of variants receive conflicting inter-
pretations across submitting laboratories.

2.2 Somatic Variant Interpretation Standards

The interpretation of somatic variants in cancer presents distinct challenges from germline
variant classification, as the clinical significance of a mutation depends on its role as a driver
versus passenger event, its association with prognosis, and its potential as a therapeutic target
or resistance mechanism. The 2017 AMP/ASCO/CAP joint guidelines established a four-tier
system for categorizing somatic variants based on clinical significance: tier I (variants of strong
clinical significance with FDA-approved therapies or inclusion in professional guidelines), tier II
(variants of potential clinical significance based on clinical trial evidence or established biological
function), tier III (variants of unknown clinical significance), and tier IV (benign or likely benign
variants) [Li et al., 2017].

Knowledge bases such as CIViC (Clinical Interpretation of Variants in Cancer) and OncoKB
provide curated, evidence-based annotations of somatic variants to support clinical interpreta-
tion [Griffith et al., 2017, Chakravarty et al., 2017]. These resources catalog the therapeutic,
diagnostic, and prognostic implications of specific variants across cancer types, with evidence
ratings based on the strength of supporting clinical and preclinical data. The integration of
such knowledge bases into clinical workflows enables systematic, evidence-based variant inter-
pretation while acknowledging that the rapidly evolving landscape of precision oncology requires
continuous updating of variant annotations.

2.3 Laboratory Validation Requirements

The Clinical Laboratory Improvement Amendments (CLIA) regulations and CAP accredita-
tion standards establish the regulatory framework for clinical laboratory testing in the United
States. For NGS-based tests, the AMP and CAP joint recommendations for bioinformatics
pipeline validation provide detailed guidance on establishing and documenting analytical per-
formance characteristics [Roy et al., 2018]. These guidelines emphasize the distinction between
analytical validation (demonstrating that the assay accurately detects variants within the de-
fined reportable range) and clinical validation (establishing the relationship between test results
and clinical phenotypes or outcomes).

Key performance metrics for variant calling validation include sensitivity (the proportion of
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true variants correctly identified), specificity (the proportion of non-variant positions correctly
called as reference), positive predictive value (the proportion of called variants that are true
positives), and reproducibility across runs, operators, and instruments. The Genome in a Bottle
(GIAB) consortium has developed extensively characterized reference materials, including well-
studied cell lines such as NA12878 (HG001) and a diversity panel spanning multiple populations,
that serve as gold-standard truth sets for validation studies [Zook et al., 2014, 2019]. These
reference materials, coupled with high-confidence variant call sets, enable rigorous benchmarking
of variant calling pipelines across diverse genomic regions.

Figure 3: ACMG/AMP variant classification framework. The five-tier classification
system established by ACMG/AMP guidelines for germline variant interpretation. Classifica-
tion is determined by combining evidence criteria from multiple categories including population
frequency data, computational predictions, functional studies, segregation analysis, de novo oc-
currence, and allelic data. The framework provides rules for combining evidence to reach final
pathogenicity classifications.

3 Germline Variant Calling

3.1 Traditional Statistical Approaches

The Genome Analysis Toolkit (GATK), developed at the Broad Institute, has long represented
the gold standard for germline variant calling in clinical and research applications [McKenna
et al., 2010, DePristo et al., 2011]. The current GATK HaplotypeCaller employs a local re-
assembly approach that constructs haplotypes from aligned reads in regions showing evidence of
variation, followed by pair hidden Markov model (HMM) evaluation to calculate the likelihood of
observed reads given candidate haplotypes. This approach provides robust handling of complex
variants including multi-nucleotide polymorphisms and indels in close proximity.

The GATK Best Practices workflow encompasses multiple processing steps including duplicate
marking, base quality score recalibration (BQSR), variant calling, and variant quality score
recalibration (VQSR). VQSR applies machine learning to distinguish true variants from artifacts
based on site-level annotations, though recent evidence suggests that hard filtering approaches
may perform comparably or superiorly in many contexts, particularly for targeted sequencing
applications. The computational requirements of the full GATK pipeline are substantial, though
optimized implementations including the Intel Genomics Kernel Library (GKL) and GPU-
accelerated versions have improved throughput.
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Other established statistical variant callers include FreeBayes, which implements a Bayesian
haplotype-based approach without local re-assembly [Garrison and Marth, 2012], and Platy-
pus, which integrates mapping, assembly, and haplotype-based methods [Rimmer et al., 2014].
Comparative evaluations have generally demonstrated that GATK HaplotypeCaller and Free-
Bayes achieve similar accuracy for SNV detection, with differences in indel calling performance
depending on the dataset and genomic context.

3.2 Deep Learning-Based Variant Callers

The introduction of DeepVariant by Google in 2017 marked a paradigm shift in variant calling
methodology [Poplin et al., 2018]. DeepVariant reconceptualizes variant calling as an image clas-
sification problem: aligned reads are represented as RGB pileup images encoding base identity,
base quality, and mapping quality, which are then processed through an Inception-v3 convo-
lutional neural network to classify candidate variants as homozygous reference, heterozygous
variant, or homozygous variant. This approach leverages the power of deep learning to implic-
itly learn complex features distinguishing true variants from artifacts without explicit feature
engineering.

DeepVariant achieved recognition through its performance in the precisionFDA Truth Chal-
lenge, where it demonstrated superior accuracy compared to traditional methods [Olson et al.,
2022]. Subsequent versions have extended support to long-read sequencing platforms including
Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), with platform-specific
models trained on appropriate training data. DeepTrio extends the DeepVariant architecture to
leverage trio information (proband, mother, father), enabling improved variant calling through
explicit modeling of Mendelian inheritance patterns.

Comparative studies have demonstrated that DeepVariant consistently outperforms GATK Hap-
lotypeCaller for both SNV and indel detection, with particularly notable improvements for in-
del calling [Chen et al., 2022]. A study comparing the tools using trio sequencing found that
DeepVariant achieved significantly lower Mendelian error rates (3.09% vs. 5.25% for GATK)
and higher transition/transversion ratios, suggesting a greater proportion of true positive calls.
However, GATK has demonstrated advantages in detecting rare variants, which are often of
particular clinical interest in the context of rare disease diagnosis.

Additional deep learning variant callers have emerged, including Clair3, which employs a multi-
task learning framework supporting both short-read and long-read data [Zheng et al., 2022],
and DNAscope, which combines GATK-style haplotype calling with AI-based genotyping [Li
et al., 2025]. The DRAGEN platform from Illumina integrates hardware-accelerated alignment
and variant calling with deep learning-enhanced accuracy, achieving performance comparable
to DeepVariant with substantially reduced computational requirements [Ho et al., 2020].

3.3 Performance Benchmarking and Clinical Considerations

Rigorous benchmarking against gold-standard truth sets is essential for evaluating variant caller
performance. The GIAB consortium’s high-confidence call sets provide extensively validated
reference data across multiple human genomes [Zook et al., 2019]. The precisionFDA Truth
Challenge V2 extended benchmarking to challenging genomic regions including segmental du-
plications, tandem repeats, and regions with poor mappability, where variant calling accuracy
is typically reduced [Olson et al., 2022].

Current state-of-the-art tools achieve SNP F1-scores exceeding 99.9% on benchmark datasets,
while indel calling performance ranges from approximately 99% to 99.5% depending on the
tool and dataset. However, it is crucial to recognize that benchmark performance on well-
characterized samples may not fully reflect real-world clinical performance, where sample quality

Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


NGS Variant Callers in Clinical Practice 9

variations, sequencing artifacts, and complex variant types present additional challenges. Clin-
ical validation using samples with confirmed variants, particularly in disease-relevant genes,
remains essential.

For clinical laboratories, practical considerations beyond raw accuracy influence tool selection.
GATK benefits from extensive documentation, widespread adoption, and established validation
in clinical settings, while DeepVariant offers superior accuracy but requires GPU resources for
optimal performance. Hybrid approaches combining multiple callers, with intersection or union
strategies for variant selection, may offer advantages in sensitivity or specificity depending on
clinical requirements.

Figure 4: Comparison of germline variant calling approaches. Illustration of three
paradigms for germline variant calling: (Left) Traditional statistical methods exemplified by
GATK HaplotypeCaller, employing Bayesian probability models and hidden Markov models
with quality score recalibration; (Center) Deep learning approaches represented by DeepVariant,
which processes pileup images through convolutional neural networks; (Right) Hybrid methods
such as DRAGEN and DNAscope that combine statistical modeling with AI-enhanced genotyp-
ing. Performance metrics from benchmark evaluations demonstrate the competitive accuracy
achieved by modern deep learning approaches.

4 Somatic Variant Calling

4.1 Challenges in Somatic Variant Detection

Somatic variant calling for cancer genomics presents fundamentally different challenges com-
pared to germline analysis. Tumor samples typically represent heterogeneous mixtures of neo-
plastic and normal cells, with variant allele frequencies determined by the interaction of tumor
purity (the proportion of neoplastic cells in the sample) and clonal architecture (the fraction of
tumor cells carrying a given mutation). Subclonal mutations, present in only a subset of tumor
cells, may occur at VAFs well below the 50% expectation for germline heterozygous variants,
potentially approaching the technical noise floor of sequencing.

The detection of low-VAF variants requires careful attention to error modeling, as sequencing
and PCR artifacts can generate false positive signals indistinguishable from true low-frequency
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mutations. Approaches to managing these artifacts include the use of unique molecular identi-
fiers (UMIs) that enable consensus calling to suppress PCR duplicates and sequencing errors,
optimized library preparation protocols, and sophisticated error models that account for se-
quence context-dependent error rates. The emergence of cell-free DNA (cfDNA) analysis for
liquid biopsy applications has further intensified these challenges, as circulating tumor DNA
(ctDNA) may represent only a small fraction of total cfDNA, requiring detection of variants at
VAFs of 0.1% or lower [Wan et al., 2017].

4.2 Tumor-Normal Paired Analysis

The availability of matched normal tissue (typically peripheral blood or adjacent normal tissue)
substantially improves somatic variant calling accuracy by enabling direct discrimination of
somatic mutations from germline polymorphisms and systematic artifacts. Mutect2, the current
somatic variant calling module within GATK, employs a Bayesian approach that models the
probability of observing the read data given somatic, germline, or artifact hypotheses [Cibulskis
et al., 2013, Benjamin et al., 2019]. By jointly analyzing tumor and normal samples, Mutect2
can effectively filter germline variants while maintaining sensitivity for true somatic events.

Strelka2 provides an alternative approach for somatic variant calling from tumor-normal pairs,
offering both SNV and indel detection with competitive accuracy and substantially faster run-
time compared to Mutect2 [Kim et al., 2018]. Strelka2 employs a mixture model framework
that explicitly accounts for tumor purity and models the probability of each candidate variant
being somatic, germline heterozygous, or germline homozygous. The tool has demonstrated
strong performance in benchmarking evaluations and is widely adopted in clinical and research
settings.

VarScan2 represents another established somatic variant caller, employing a heuristic approach
based on coverage and variant allele frequency thresholds [Koboldt et al., 2012]. While less
sophisticated in its statistical modeling compared to Mutect2 or Strelka2, VarScan2 offers com-
putational efficiency and has been successfully deployed in numerous clinical pipelines. How-
ever, default parameters require careful adjustment for low-VAF detection, as the standard VAF
threshold of 20% would miss many clinically relevant subclonal mutations.

4.3 Tumor-Only Analysis

In many clinical scenarios, matched normal tissue is unavailable, necessitating tumor-only anal-
ysis pipelines. This approach introduces additional complexity, as somatic variants must be dis-
tinguished from germline polymorphisms without direct comparison. Strategies for tumor-only
calling typically involve filtering against population databases (gnomAD, dbSNP) to remove
common germline variants, though this approach may inappropriately filter somatic variants
occurring at known polymorphic sites or miss rare germline variants absent from databases
[Karczewski et al., 2020].

Panel of Normals (PoN) approaches, wherein a collection of normal samples processed through
the same laboratory workflow serves as a reference for identifying recurrent artifacts and germline
variants, can substantially improve tumor-only calling specificity. The construction of laboratory-
specific PoN datasets capturing workflow-specific artifacts is particularly valuable for clinical
pipelines. Additionally, analysis of variant allele frequency distributions can aid in discriminat-
ing clonal somatic mutations (typically present at VAFs reflecting tumor purity) from subclonal
events and germline variants.

For cfDNA applications, tumor-only calling is the norm, as the circulating DNA itself derives
from multiple tissue sources including tumor cells. Specialized tools such as eVIDENCE have
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been developed for cfDNA variant filtering, employing molecular barcoding information to dis-
tinguish true low-VAF variants from artifacts [Wan et al., 2017]. Machine learning approaches
training on features including read depth, mapping quality, strand bias, and variant position
within reads have shown promise for improving the discrimination of true ctDNA variants from
false positives.

4.4 Ensemble Approaches and Clinical Implementation

The recognition that individual somatic variant callers have different strengths and weaknesses
has motivated ensemble approaches that combine results from multiple tools. A recent bench-
marking study identified optimal ensembles of four callers for SNV detection (MuSE, Mutect2,
Strelka2) and indel detection (Mutect2, Strelka2, VarScan2), with voting thresholds requiring
agreement between at least two tools [Van der Sanden et al., 2024]. Such ensemble strategies
can improve both sensitivity (through union approaches) and specificity (through intersection
requirements), with the optimal strategy depending on clinical priorities.

For clinical oncology laboratories, the selection of somatic variant calling approaches must bal-
ance accuracy against practical considerations including computational requirements, turnaround
time, and validation burden. Many laboratories employ tiered approaches, with high-sensitivity
methods applied to clinically actionable genes and more conservative filtering for genome-wide
or exome-wide analysis. Integration with variant annotation and interpretation tools such as
VEP [McLaren et al., 2016] and knowledge bases such as OncoKB [Chakravarty et al., 2017] is
essential for translating variant calls into clinical recommendations.

Figure 5: Somatic variant calling strategies. Comparison of tumor-normal paired and
tumor-only analysis approaches. The tumor-normal paired workflow enables direct identifica-
tion of somatic variants through comparison with matched germline, while tumor-only analysis
requires filtering against population databases and panels of normals to distinguish somatic
from germline variants. The schematic illustrates the additional considerations for cell-free
DNA (cfDNA) liquid biopsy applications, where detection of low variant allele frequency (VAF)
tumor-derived variants requires specialized artifact filtering strategies.
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5 Structural Variants and Copy Number Variations

5.1 Detection Methodologies

Structural variants (SVs), defined as genomic alterations larger than 50 base pairs, encompass
deletions, duplications, insertions, inversions, and translocations. These variants contribute
significantly to human genetic diversity and disease, yet their detection from short-read se-
quencing data remains technically challenging compared to small variant calling. The difficulty
arises from the fundamental limitations of short reads in spanning or uniquely mapping across
large genomic rearrangements, particularly in repetitive regions where SVs are enriched.

Three primary signals are exploited for SV detection from short-read data: discordant read pairs
(read pairs with unexpected insert size or orientation), split reads (individual reads that align
discontinuously across a breakpoint), and read depth changes (coverage increases or decreases
reflecting copy number gains or losses) [Kosugi et al., 2019]. Tools differ in their utilization and
integration of these signals, with implications for sensitivity across different SV types and sizes.

Manta, developed by Illumina, employs a comprehensive approach integrating paired-end and
split-read information with local assembly for breakpoint refinement [Chen et al., 2016]. The tool
demonstrates particularly strong performance for deletion detection and has established clinical
utility in constitutional genetics and oncology applications. Manta’s local assembly capability
enables precise breakpoint resolution and improved detection of novel insertions compared to
purely alignment-based methods.

DELLY implements a similar multi-signal approach, combining paired-end and split-read analy-
sis for SV discovery [Rausch et al., 2012]. Originally developed for cancer genomics, DELLY has
been extended to germline applications and demonstrates competitive performance across SV
types. The tool’s population-mode analysis enables joint genotyping across multiple samples,
facilitating rare variant identification in cohort studies.

LUMPY employs a probabilistic framework that integrates multiple alignment signals, weighting
different evidence types according to their informativeness for each candidate SV [Layer et al.,
2014]. This flexible approach enables incorporation of diverse signal types including paired-end,
split-read, and even read-depth information from external tools.

5.2 Copy Number Variation Detection

Copy number variations (CNVs)—gains or losses of genomic segments—require approaches em-
phasizing read depth analysis. CNVnator employs a read-depth approach using fixed-size ge-
nomic bins, analyzing coverage patterns to identify regions of gain or loss [Abyzov et al., 2011].
This method is particularly effective for large CNVs (multiple kilobases and larger) but may
miss smaller events or struggle in regions with variable mappability.

For targeted sequencing and gene panel applications, specialized CNV calling tools optimize per-
formance for the reduced, non-contiguous target space. Tools such as ExomeDepth, CONTRA,
and XHMM employ sample-to-reference or sample-to-cohort comparisons to identify CNVs
within captured regions. The limited capture uniformity and potential for batch effects re-
quire careful attention to reference sample selection and normalization procedures.

The integration of multiple SV and CNV calling tools through ensemble approaches has demon-
strated improved performance compared to individual callers. A recent comprehensive evalua-
tion found that merging calls supported by a majority of tools improved precision compared to
the best individual caller, though at some cost to recall [Zhang et al., 2024]. For clinical applica-
tions, the tradeoff between sensitivity and specificity must be calibrated to the clinical context,
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with higher sensitivity typically preferred for diagnostic applications and higher specificity for
screening.

5.3 Clinical Implementation Challenges

The clinical implementation of SV and CNV calling presents several challenges beyond those
encountered with small variants. First, the variable performance of callers across SV types and
sizes necessitates careful validation across the spectrum of variants relevant to clinical practice.
Second, the interpretation of SVs requires integration of multiple annotation sources, including
gene content, regulatory element disruption, and literature evidence, without the standardized
frameworks available for small variants.

The ACMG has published technical standards for chromosomal microarray analysis and rec-
ommendations for the clinical interpretation of copy number variants, providing guidance on
CNV classification analogous to the sequence variant guidelines [Richards et al., 2015]. How-
ever, the application of these standards to NGS-based CNV detection requires careful attention
to the technical differences between methodologies, including resolution limits and detection
sensitivity.

For clinical laboratories, the validation of SV/CNV calling pipelines requires representative sam-
ples spanning the range of clinically relevant variant types. Orthogonal confirmation methods,
including chromosomal microarray, multiplex ligation-dependent probe amplification (MLPA),
and optical genome mapping, may be employed to establish truth sets for validation. On-
going participation in external quality assessment programs and proficiency testing provides
additional evidence of pipeline performance.

Figure 6: Structural variant and copy number variation detection methods. Overview
of the three primary approaches for SV/CNV detection from short-read sequencing data. The
read-pair method identifies variants through discordant paired-end alignments; the split-read
method detects breakpoints through reads aligning discontinuously; the read-depth method
identifies copy number changes through coverage analysis. Different tools emphasize different
signal types: Manta and DELLY integrate read-pair and split-read signals with local assembly,
while CNVnator focuses on read-depth analysis. The schematic illustrates canonical SV types
including deletions, duplications, inversions, and translocations.
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6 Clinical Implementation and Pipeline Validation

6.1 Analytical Validation Requirements

The analytical validation of NGS variant calling pipelines constitutes a foundational requirement
for clinical implementation, ensuring that assays perform reliably within defined parameters.
The AMP/CAP joint recommendations provide a comprehensive framework addressing key
validation elements including accuracy, precision, analytical sensitivity, analytical specificity,
and reportable range [Roy et al., 2018].

Accuracy assessment requires comparison of variant calls against established reference stan-
dards. The GIAB consortium reference materials provide well-characterized truth sets for
common variants, while synthetic or spike-in controls may be necessary for rare or challeng-
ing variant types. Clinical laboratories should evaluate accuracy across the full spectrum of
variant types within the reportable range, with particular attention to indels (which typically
show lower accuracy than SNVs) and variants in challenging genomic contexts.

Precision studies evaluate reproducibility across multiple dimensions including within-run (re-
peatability), between-run, between-operator, and between-instrument variation. For variant
calling, precision is typically assessed through concordance of variant calls across replicate anal-
yses. Laboratories should establish acceptance criteria for precision metrics and monitor ongoing
performance through quality control procedures.

Analytical sensitivity and specificity characterize the assay’s ability to correctly identify true
positives and true negatives, respectively. For variant calling, sensitivity is typically high for
well-covered regions but may decrease at the edges of capture targets or in regions with reduced
coverage. Defining a minimum coverage threshold for variant calling and excluding regions below
this threshold from the reportable range represents a common approach to ensuring adequate
sensitivity.

The limit of detection (LoD) is particularly important for somatic variant calling, where clin-
ically relevant variants may be present at low VAFs. LoD determination requires analysis of
samples with known variants at varying frequencies, typically generated through dilution of posi-
tive controls or synthetic spike-ins. Laboratories should clearly communicate the VAF threshold
below which variant detection is not reliable.

6.2 Quality Metrics and Monitoring

Ongoing quality monitoring ensures sustained pipeline performance after initial validation. Key
metrics for variant calling quality include:

• Coverage depth and uniformity: Adequate coverage across the target region is prereq-
uisite for variant detection. Metrics including mean coverage, percentage of target bases
covered at defined thresholds (e.g., 20x, 50x), and coefficient of variation characterize
coverage distribution.

• Mapping quality: The proportion of reads uniquely mapping to the reference genome
and the distribution of mapping quality scores provide insight into alignment quality and
potential issues with sample contamination or library preparation.

• Base quality: Base quality score distributions and the proportion of bases exceeding
quality thresholds inform variant calling confidence.

• Transition/transversion ratio: For whole-exome or genome data, the Ti/Tv ratio
provides a global quality metric, with ratios substantially deviating from expected values
(approximately 2.0-2.1 for exomes) suggesting potential quality issues.
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• Variant call rates: Monitoring the total number of variants called per sample, stratified
by type (SNV, indel) and classification (pathogenic, VUS, benign), enables detection of
systematic shifts potentially indicating pipeline or sample issues.

Automated quality control systems that flag samples or runs failing defined thresholds enable
proactive identification of quality issues before results release. Integration of quality metrics into
laboratory information systems facilitates trend monitoring and documentation for regulatory
compliance.

6.3 Pipeline Reproducibility and Version Control

Reproducibility—the ability to regenerate consistent results from the same input data—is es-
sential for clinical variant calling pipelines. Software version control, documented configuration
parameters, and containerized execution environments (using tools such as Docker or Singular-
ity) support reproducibility by ensuring consistent runtime environments across analyses.

Reference genome versioning requires particular attention, as differences between genome builds
or even between releases of the same build can impact variant calling. Clinical laboratories
should standardize on specific reference genome versions and document all ancillary resources
(gene annotations, variant databases) used in analysis. Migration between genome builds re-
quires careful re-validation to ensure maintained performance.

Pipeline updates, whether for bug fixes, performance improvements, or incorporation of new
features, must be managed through formal change control procedures. Significant changes re-
quire re-validation proportionate to the scope of modification, ranging from targeted verification
for minor changes to comprehensive re-validation for major updates. Documentation of valida-
tion studies, including test data, results, and acceptance criteria, provides essential evidence for
regulatory review.
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Figure 7: Clinical pipeline validation workflow. Overview of analytical and clinical valida-
tion requirements for NGS variant calling pipelines. Analytical validation encompasses accuracy
assessment using reference materials (GIAB), precision studies evaluating reproducibility, limit
of detection determination for low-frequency variants, and reportable range definition. Clinical
validation establishes the relationship between variant detection and clinical outcomes. Ongo-
ing quality monitoring ensures sustained performance, with metrics feeding into CAP/CLIA
compliance documentation.

6.4 Laboratory Information System Integration

The integration of NGS bioinformatics pipelines with laboratory information systems (LIS)
represents a critical but often underappreciated aspect of clinical implementation. Effective
integration enables seamless sample tracking from accessioning through result reporting, auto-
mated data transfer between systems, and audit trail documentation for regulatory compliance.

Standards-based interfaces facilitate interoperability between NGS systems and broader health-
care information infrastructure. Health Level Seven (HL7) messaging standards, including HL7
v2 for traditional laboratory reporting and the emerging Fast Healthcare Interoperability Re-
sources (FHIR) standard for genomic data exchange, provide frameworks for structured data
transmission. The GA4GH (Global Alliance for Genomics and Health) has developed specifi-
cations for genomic data representation and exchange that complement healthcare standards.

Variant curation workflows, wherein identified variants undergo expert review and classification,
require specialized interfaces supporting efficient review of variant evidence, documentation
of classification rationale, and generation of clinical reports. Several commercial and open-
source platforms provide variant curation functionality, with varying degrees of integration
with upstream analysis and downstream reporting systems.

The complexity of NGS data and the nuanced nature of variant interpretation create challenges
for standard laboratory reporting templates. Clinical reports must communicate essential in-
formation including variants identified, classification rationale, and clinical implications while
remaining comprehensible to non-specialist ordering providers. Emerging approaches includ-
ing interactive electronic reports and integration with clinical decision support systems offer
potential for improved communication of complex genomic information.
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Figure 8: Laboratory information system integration architecture. Schematic illus-
trating the integration of NGS bioinformatics pipelines with laboratory information systems
(LIS) and electronic health records (EHR). The architecture encompasses data flow from NGS
analysis through variant curation interfaces to clinical decision support and reporting modules.
Standards-based interfaces (HL7/FHIR) enable interoperability with healthcare information
systems. Security layers ensure HIPAA compliance and audit trail documentation.

7 Emerging Trends and Future Directions

7.1 Long-Read Sequencing Technologies

The maturation of long-read sequencing technologies from Pacific Biosciences (PacBio HiFi) and
Oxford Nanopore Technologies (ONT) is reshaping the variant calling landscape. Long reads
spanning thousands of base pairs enable resolution of complex structural variants, repetitive
regions, and haplotype phasing that remain challenging for short-read approaches. PacBio HiFi
reads, with circular consensus accuracy exceeding 99.9%, now approach short-read accuracy
while providing dramatically improved contiguity.

Variant calling tools have been developed or adapted for long-read data. DeepVariant provides
models optimized for both PacBio and ONT platforms, while Clair3 implements a unified ar-
chitecture supporting multiple sequencing technologies [Zheng et al., 2022, Poplin et al., 2018].
For structural variants, long reads provide direct evidence of large insertions and complex rear-
rangements that short reads can only indirectly infer. The precisionFDA Truth Challenge V2
demonstrated the superior performance of long-read approaches in challenging genomic regions
[Olson et al., 2022].

Clinical adoption of long-read sequencing is accelerating, particularly for applications where
short-read limitations have constrained diagnostic yield. Constitutional genetics applications
benefiting from long-read approaches include repeat expansion disorders, structural variant-
driven syndromes, and pharmacogenomic haplotyping. In oncology, long-read sequencing of
tumor samples can resolve complex structural rearrangements and improve characterization of
fusion genes.
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7.2 Artificial Intelligence and Machine Learning Advances

The success of deep learning for variant calling has stimulated broader application of artificial
intelligence across clinical genomics workflows. Beyond primary variant calling, AI approaches
are being developed for variant prioritization and interpretation, clinical phenotype extraction
from medical records, and prediction of variant pathogenicity from sequence features.

Foundation models trained on large genomic datasets show promise for diverse downstream ap-
plications. Models such as those emerging from genomic language model research can capture
complex sequence patterns relevant to variant impact prediction, potentially improving upon
existing computational prediction tools. The integration of multi-modal data—combining ge-
nomic variants with gene expression, protein structure predictions, and clinical features—offers
opportunities for more comprehensive variant assessment.

However, the deployment of AI systems in clinical settings requires careful attention to valida-
tion, interpretability, and ongoing performance monitoring. Regulatory frameworks for AI/ML-
based medical devices are evolving, with the FDA developing approaches for continuous learning
systems that update based on real-world data. Clinical laboratories implementing AI-enhanced
pipelines must establish appropriate validation procedures and ensure transparency in how AI
contributions influence clinical decisions.

7.3 Population-Scale Genomics and Collaborative Networks

The accumulation of population-scale genomic datasets is transforming variant interpretation.
Resources such as gnomAD, now encompassing data from over 140,000 exomes and genomes,
provide increasingly refined estimates of variant frequency across diverse populations [Kar-
czewski et al., 2020]. This information is essential for filtering common polymorphisms and
identifying variants that are rare enough to potentially cause disease.

Collaborative networks for variant interpretation, exemplified by ClinGen’s expert panels and
variant curation groups, enable the systematic accumulation of evidence across contributing lab-
oratories [Rehm et al., 2015]. Data sharing initiatives and harmonized classification standards
are progressively reducing inter-laboratory discordance, though substantial challenges remain,
particularly for rare variants and genes with limited functional characterization.

The expansion of genomic testing across diverse populations has highlighted the need for
ancestry-inclusive reference databases and variant interpretation frameworks. Variants com-
mon in underrepresented populations may be misclassified as potentially pathogenic due to
their absence from historically Eurocentric databases. Addressing these disparities requires
deliberate efforts to expand reference databases and ensure that variant interpretation tools
perform equitably across populations.

8 Conclusion
NGS variant calling has matured from an emerging technology to an established cornerstone of
clinical molecular diagnostics. The tools and methodologies reviewed in this paper—from tradi-
tional statistical approaches such as GATK HaplotypeCaller to deep learning innovations exem-
plified by DeepVariant, from matched tumor-normal somatic calling with Mutect2 to structural
variant detection with Manta and DELLY—collectively enable comprehensive genetic variant
detection across clinical applications in constitutional genetics and oncology.

Several key themes emerge from this review. First, the continued improvement in variant call-
ing accuracy, driven particularly by deep learning approaches, has narrowed the gap between
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sequencing data generation and reliable variant identification. Modern tools achieve SNP F1-
scores exceeding 99.9% and indel F1-scores above 99%, with ongoing refinements addressing
challenging genomic regions and variant types. Second, the availability of robust reference
standards, most notably from the GIAB consortium, provides essential foundations for pipeline
validation and benchmarking. Third, regulatory frameworks including ACMG/AMP guide-
lines for variant interpretation and AMP/CAP standards for pipeline validation establish clear
expectations for clinical implementation.

Despite these advances, significant challenges remain. Low variant allele frequency detection in
tumor samples and liquid biopsies continues to require careful attention to error modeling and
artifact filtering. Structural variant calling, while improved, remains less mature than small
variant detection, with variable performance across SV types and sizes. The interpretation of
variants of uncertain significance constitutes an ongoing bottleneck, with functional character-
ization and clinical correlation data accumulating more slowly than variant discovery.

For clinical geneticists and laboratory directors, the practical implications of this review include
several recommendations. Pipeline selection should balance accuracy against practical consid-
erations including computational requirements, validation burden, and integration with existing
systems. Ensemble approaches combining multiple callers may offer advantages in sensitivity
or specificity depending on clinical priorities. Robust validation against appropriate reference
materials and ongoing quality monitoring are essential for sustained performance. Finally, en-
gagement with collaborative networks and shared resources supports the progressive refinement
of variant interpretation.

Looking forward, the integration of long-read sequencing, AI-enhanced interpretation, and
population-scale data resources promises continued improvement in clinical variant detection
and interpretation. As genomic testing expands to broader patient populations and new clini-
cal applications, the variant calling tools and frameworks described in this review will continue
to evolve, requiring ongoing attention from clinical laboratories to maintain state-of-the-art
capabilities.
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