

Deadliest Animal Venoms: Mechanisms of Action and Emergency Response Guide

K-Dense Web

December 2025

Abstract

This outdoor safety guide reviews the five most deadly naturally occurring animal venoms and toxins, ranked by LD50 (lethal dose for 50% of exposed subjects). For each organism, we describe the physiological mechanisms of action and provide clear, evidence-based emergency procedures for managing envenomation. The venoms covered include: cone snails (LD50: 0.001–0.003 mg/kg), box jellyfish (LD50: 0.04 mg/kg), Brazilian wandering spider (LD50: 0.134 mg/kg), inland taipan snake (highest toxicity among snakes), and Sydney funnel-web spider. This guide is intended for outdoor enthusiasts, wilderness travelers, and healthcare providers working in at-risk regions.

Contents

1	Introduction	2
2	Cone Snails: The World's Most Venomous Animal	2
2.1	Overview and Distribution	2
2.2	Venom Composition and Mechanism of Action	2
2.3	Clinical Presentation	2
2.4	Emergency Response Procedure	3
3	Box Jellyfish: The Fastest-Acting Marine Toxin	3
3.1	Overview and Distribution	3
3.2	Venom Composition and Mechanism of Action	4
3.3	Clinical Presentation	4
3.4	Emergency Response Procedure	4
4	Brazilian Wandering Spider: The Most Venomous Spider	5
4.1	Overview and Distribution	5
4.2	Venom Composition and Mechanism of Action	5
4.3	Clinical Presentation	6
4.4	Emergency Response Procedure	6

5 Inland Taipan: The Most Toxic Snake	7
5.1 Overview and Distribution	7
5.2 Venom Composition and Mechanism of Action	7
5.3 Clinical Presentation	8
5.4 Emergency Response Procedure	8
6 Sydney Funnel-Web Spider: The Deadliest Spider in Urban Areas	9
6.1 Overview and Distribution	9
6.2 Venom Composition and Mechanism of Action	9
6.3 Clinical Presentation	10
6.4 Emergency Response Procedure	10
7 Summary Comparison Table	12
8 General Principles for Venom Envenomation Management	12
8.1 Pressure Immobilization (Most Envenomations)	12
8.2 Seek Medical Care Rapidly	12
8.3 Avoid Harmful Interventions	12
8.4 Antivenom Administration	13
9 Conclusion	13
10 References	13
A Emergency Response Flowcharts	15
A.1 Universal Venom Envenomation Response	15
A.2 Organism-Specific Response Summary	15

1 Introduction

Animal venoms represent some of nature's most potent biological toxins. A venom's potency is typically measured by LD50 (lethal dose 50%), the amount of substance required to cause death in 50% of exposed test subjects. Lower LD50 values indicate greater toxicity. Understanding the mechanisms of action of these venoms and knowing appropriate emergency procedures can mean the difference between life and death in outdoor settings.

This guide focuses on the five deadliest naturally occurring venoms, providing both scientific detail and practical, actionable emergency response procedures. While some of these animals are rare or shy, outdoor enthusiasts may encounter them in certain geographic regions.

2 Cone Snails: The World's Most Venomous Animal

2.1 Overview and Distribution

Cone snails (genus *Conus*) are marine gastropods found in tropical and subtropical waters worldwide. The marbled cone snail (*Conus marmoreus*) possesses the lowest LD50 of any animal on Earth: 0.001–0.003 mg/kg body weight. The cone snail hunts small fish by injecting venom through a modified tooth (radula) that acts like a hypodermic needle. Humans may accidentally contact a cone snail while handling shells, snorkeling, or diving.

2.2 Venom Composition and Mechanism of Action

Cone snail venom is a complex cocktail of peptides called conotoxins, each targeting specific ion channels in the nervous system. The primary mechanisms of action include:

- **Voltage-gated ion channel blockade:** Conotoxins block calcium, sodium, and potassium channels in motor neurons, preventing electrical signal transmission.
- **Nicotinic receptor inhibition:** Alpha-conotoxins bind to nicotinic acetylcholine receptors at the neuromuscular junction, blocking acetylcholine binding and preventing skeletal muscle contraction.
- **Cumulative neurotoxic effect:** Multiple toxin types work synergistically, disrupting multiple points of the nervous system.

The result is progressive flaccid paralysis. Initial symptoms may appear within minutes or be delayed for days, making cone snail envenomation particularly insidious.

2.3 Clinical Presentation

Symptoms of cone snail envenomation include:

- Local pain and redness at the sting site
- Numbness or tingling spreading from the wound
- Muscle paralysis (may progress to respiratory muscles)
- Respiratory failure if the diaphragm becomes paralyzed
- Potential death if ventilatory support is not provided

2.4 Emergency Response Procedure

STEP 1: Immediate Actions (First Minutes)

[label=4.]

1. **Remove from water:** Ensure victim is safely removed from the marine environment.
2. **Wash the wound:** Rinse gently with clean water or saline. Do not rub.
3. **Pressure immobilization:** Apply a firm elastic bandage starting at the distal end (fingers or toes) and wrap toward the axial joints. The bandage should be snug but not so tight as to compromise circulation.
4. **Immobilize the limb:** Splint or sling the affected limb to prevent muscle movement, which can accelerate venom absorption.

STEP 2: Transport to Hospital (Within 30 Minutes if Possible)

[label=4.]

1. **Call emergency services:** Activate EMS or arrange immediate helicopter evacuation if in a remote location.
2. **Maintain pressure immobilization:** Keep the bandage in place during transport.
3. **Monitor breathing:** Observe for signs of respiratory distress.
4. **Do not remove the bandage:** Leave pressure immobilization in place until at hospital.

STEP 3: Hospital-Based Treatment

[label=4.]

1. **Supportive care:** This is the primary treatment. There is no antivenom for cone snail envenomation.
2. **Mechanical ventilation:** If respiratory paralysis occurs, mechanical ventilation support is essential.
3. **Intensive care monitoring:** Continuous cardiac and respiratory monitoring.
4. **Symptomatic treatment:** Pain management, treatment of secondary infections, and nutritional support.

Prognosis: With appropriate supportive care and ventilatory support, patients can survive and recover, though recovery may take weeks to months.

3 Box Jellyfish: The Fastest-Acting Marine Toxin

3.1 Overview and Distribution

The box jellyfish, particularly *Chironex fleckeri* (Indo-Pacific box jellyfish), is found in waters off Australia and the Indo-Pacific region. With an LD50 of 0.04 mg/kg, it is the second most venomous animal reviewed here. Box jellyfish have trailing tentacles covered with nematocysts (stinging cells) that discharge venom upon contact with skin.

3.2 Venom Composition and Mechanism of Action

Box jellyfish venom contains multiple toxin classes:

- **Cardiotoxins:** Disrupt cardiac muscle function by interfering with ion channel regulation, potentially causing arrhythmias and cardiovascular collapse.
- **Dermatonecrotic toxins:** Cause localized tissue death (necrosis) where they contact the skin.
- **Hemolytic toxins:** Destroy red blood cells, leading to hemolysis and reduced oxygen-carrying capacity.
- **Neurotoxins:** Similar to cone snail venom, these affect nerve transmission and muscle function.

The combined effect is rapid onset of systemic toxicity, with death potentially occurring within 2–5 minutes of severe envenomation.

3.3 Clinical Presentation

Symptoms of box jellyfish envenomation (severe cases):

- Severe pain at contact site (within seconds)
- Welts and blistering on the skin
- Muscle pain and spasms
- Chest pain and difficulty breathing
- Cardiac arrhythmias
- Hypotension (low blood pressure)
- Respiratory failure
- Potential cardiovascular collapse and death

3.4 Emergency Response Procedure

STEP 1: Immediate Water-Based Actions

[label=4.]

1. **Exit the water safely:** Move to shallow water or shore as quickly as possible without panic.
2. **Rinse with vinegar if available:** Vinegar (acetic acid, 4–5% solution) may reduce nematocyst discharge. Apply liberally to affected areas for 30 seconds.
3. **Remove tentacle fragments:** Carefully remove any visible tentacle material using a card or stick (not bare hands).
4. **Rinse with fresh water:** Flush the area with fresh water or vinegar solution.

STEP 2: Pain Management and Decontamination (First 30 Minutes)

[label=4.]

1. **Immerse in hot water:** Apply hot water (45°C/113°F) for 20–45 minutes to help neutralize venom toxins and provide pain relief. Maintain water temperature during treatment.
2. **Pain control:** Administer appropriate analgesics (paracetamol or ibuprofen for mild cases; opioids for severe cases as directed by medical personnel).
3. **Wash with soap and water:** After hot water immersion, gently wash the area with soap and water.

STEP 3: Emergency Medical Transport (Immediate for Systemic Symptoms)

[label=4.]

1. **Call emergency services immediately:** If any systemic symptoms occur (chest pain, difficulty breathing, muscle spasms, arrhythmias), activate EMS without delay.
2. **Cardiopulmonary resuscitation:** Be prepared to perform CPR if cardiac arrest occurs.
3. **Antivenom administration:** Hospital staff may administer box jellyfish antivenom intravenously for severe envenomation.
4. **Supportive care:** Mechanical ventilation, cardiac monitoring, and treatment of secondary effects.

Prevention: Wear protective clothing (wetsuits, gloves) when swimming in box jellyfish habitat during stinger season (November–May in Australia).

4 Brazilian Wandering Spider: The Most Venomous Spider

4.1 Overview and Distribution

The Brazilian wandering spider (genus *Phoneutria*, family Ctenidae) is found primarily in Central and South America, though some species range into North America. These spiders are active hunters that do not build webs; instead, they wander across the ground searching for prey. They are extremely venomous, with an LD50 of 0.134 mg/kg, making them many times more toxic than cyanide on a weight basis. Bites occur when humans inadvertently disturb these spiders.

4.2 Venom Composition and Mechanism of Action

Brazilian wandering spider venom targets the nervous system through multiple mechanisms:

- **Neurotransmitter interference:** Venom peptides disrupt acetylcholine, GABA (gamma-aminobutyric acid), and other neurotransmitter systems.
- **Ion channel modulation:** Toxins interfere with calcium, sodium, and potassium channels in neurons and muscle.
- **Excitotoxicity:** Excessive neuronal excitation leads to cell damage and cell death.
- **Systemic neurotoxic effects:** Widespread disruption of the nervous system, causing tremors, paralysis, and autonomic dysfunction.

The result is rapid onset of neurological symptoms with potential for severe systemic effects.

4.3 Clinical Presentation

Symptoms of Brazilian wandering spider envenomation (progressive):

- Severe localized pain at bite site (immediate)
- Numbness and tingling around bite
- Tremors and muscle spasms (15–60 minutes)
- Excessive salivation
- Difficulty swallowing
- Respiratory muscle paralysis (in severe cases)
- Arrhythmias and cardiovascular effects
- Potential respiratory failure and death

4.4 Emergency Response Procedure

STEP 1: Immediate Actions (First Minutes)

[label=4.]

1. **Remove from spider:** Move away from the spider to prevent additional bites.
2. **Identify the spider if safe:** If possible, safely capture or photograph the spider for identification at hospital.
3. **Wash the wound:** Clean the bite area gently with soap and water.
4. **Apply pressure immobilization:** Wrap the affected limb firmly with an elastic bandage, starting at the distal end (fingers/toes) and progressing toward the torso. This slows venom absorption.
5. **Splint or immobilize the limb:** Reduce movement to minimize venom dispersal.

STEP 2: Seek Medical Care (Within 30 Minutes)

[label=4.]

1. **Call emergency services or poison control:** Provide spider description or photo if available. Antivenom may be available.
2. **Transport to hospital:** Maintain pressure immobilization during transport.
3. **Monitor vital signs:** Watch for breathing difficulty, irregular heartbeat, or loss of consciousness.
4. **Do not use ice or heat:** Avoid application of ice packs, which may damage tissue.

STEP 3: Hospital-Based Treatment

[label=4.]

1. **Antivenom administration:** Specific antivenom for Brazilian wandering spider may be available in endemic regions.
2. **Symptomatic and supportive care:** Pain management, anticonvulsants if needed, and respiratory support.
3. **Intensive monitoring:** Continuous cardiac and neurological monitoring.
4. **Treatment of systemic effects:** Management of muscle paralysis, autonomic dysfunction, and secondary complications.

5 Inland Taipan: The Most Toxic Snake

5.1 Overview and Distribution

The inland taipan (*Oxyuranus microlepidotus*), also called the fierce snake, is found in central and eastern Australia. It possesses the highest median lethal dose (LD50) of venom of any snake species—and likely any land animal. However, this species is extremely shy and reclusive, and encounters with humans are exceedingly rare. Bites most often occur when humans attempt to handle, photograph, or capture the snake.

5.2 Venom Composition and Mechanism of Action

Inland taipan venom is complex, containing multiple toxin types:

- **Neurotoxins:** Postsynaptic toxins that block acetylcholine receptors at the neuromuscular junction, preventing muscle contraction.
- **Anticoagulants:** Compounds that interfere with blood clotting factors, leading to uncontrolled bleeding.
- **Myotoxins:** Toxins that directly damage muscle tissue.
- **Hemolytic toxins:** Agents that destroy red blood cells.
- **Cardiovascular toxins:** Compounds that affect heart function and blood pressure.

The synergistic action of these toxins causes rapid systemic collapse.

5.3 Clinical Presentation

Symptoms of inland taipan envenomation (progression):

- Localized pain and swelling at bite site (may be minimal)
- Numbness and tingling spreading from bite
- Ptosis (drooping eyelids) and difficulty moving eyes
- Difficulty speaking and swallowing
- Difficulty breathing
- Bleeding from multiple sites (uncontrolled coagulopathy)
- Muscle paralysis
- Cardiovascular collapse
- Potential death within 30 minutes to 6 hours if untreated

5.4 Emergency Response Procedure

STEP 1: Immediate Safety (First Minutes)

[label=4.]

1. **Move away from snake:** Leave the immediate area and move to safety. Do not attempt to capture the snake.
2. **Identify snake if safe:** If possible, note the snake's location and description for medical personnel.
3. **Wash the bite:** Clean gently with soap and water. Do not cut, suck, or apply tourniquets.
4. **Apply pressure immobilization:** Wrap the bitten limb firmly with elastic bandaging, starting at the distal end (fingers/toes) and progressing proximally toward the torso. Wrap to the level of the shoulder or groin. The bandage should be snug but not so tight as to cut off circulation (you should be able to fit a finger underneath).
5. **Splint the limb:** Use a makeshift sling or splint to completely immobilize the bitten limb.

STEP 2: Urgent Medical Transport (Immediately)

[label=4.]

1. **Call emergency services:** Inland taipan bites are medical emergencies. Call immediately or arrange helicopter evacuation from remote areas.
2. **Keep pressure immobilization in place:** Do not remove bandaging until at hospital.

3. **Minimize movement:** Keep the patient lying flat and calm. Excessive movement increases venom absorption.
4. **Transport to major hospital:** Ensure transport to a facility with availability of snake antivenom.
5. **Inform paramedics:** Tell responders the bite was from an inland taipan or suspected elapid snake.

STEP 3: Hospital-Based Treatment

[label=4.]

1. **Antivenom administration:** Polyvalent elapid antivenom (covers multiple Australian venomous snakes) or specific inland taipan antivenom should be administered as soon as possible. Initial dose is typically 6–8 vials IV.
2. **Coagulation studies:** Regular blood tests to monitor clotting function. Additional antivenom doses may be given if clotting parameters worsen.
3. **Respiratory support:** If respiratory muscles are paralyzed, mechanical ventilation is required.
4. **Intensive care management:** Continuous monitoring of vital signs, cardiac function, and neurological status.
5. **Treatment of complications:** Management of bleeding, secondary infections, and organ damage.

Prognosis: With appropriate pressure immobilization and rapid antivenom administration, survival rates are high. Delays in treatment significantly increase mortality risk.

6 Sydney Funnel-Web Spider: The Deadliest Spider in Urban Areas

6.1 Overview and Distribution

The Sydney funnel-web spider (*Atrax robustus*) is found in a 100-km radius around Sydney, Australia, though related species occur throughout eastern Australia. Males are far more venomous than females. These spiders live in burrows and are often encountered in homes, gardens, and outdoor spaces. The Sydney funnel-web is responsible for the most medically significant spider bite cases in Australia, and prior to the availability of antivenom, bites were frequently fatal.

6.2 Venom Composition and Mechanism of Action

Sydney funnel-web venom contains peptides and proteins that primarily target the nervous system:

- **Alpha toxins:** The primary neurotoxic components. These peptides open voltage-gated calcium channels, causing excessive calcium influx into nerve cells.

- **Excitotoxicity:** Excessive calcium entry leads to excitatory neurotoxic effects—neurons fire uncontrollably before dying.
- **Autonomic nervous system dysregulation:** Venom peptides cause sympathetic and parasympathetic nervous system hyperactivity, leading to dramatic changes in heart rate, blood pressure, and respiratory rate.
- **Neuromuscular blockade:** Some components interfere with acetylcholine transmission at the neuromuscular junction.

The progression can be extremely rapid—death may occur in under 15 minutes in severe cases.

6.3 Clinical Presentation

Symptoms of Sydney funnel-web envenomation (rapid progression):

- Localized pain and swelling at bite site
- Piloerection (goosebumps)
- Muscle fasciculations (visible muscle twitching)
- Excessive salivation and lacrimation (tearing)
- Diaphoresis (profuse sweating)
- Rapid heartbeat and hypertension (high blood pressure)
- Difficulty breathing
- Muscle paralysis
- Loss of consciousness
- Cardiac arrhythmias and potential arrest
- Death if untreated

6.4 Emergency Response Procedure

STEP 1: Immediate Actions (First Minutes)

[label=4.]

1. **Move away from spider:** Leave the immediate area and move to safety.
2. **Identify the spider if safe:** Capture or photograph the spider for identification if possible without risk of additional bites.
3. **Wash the bite:** Clean the bite area gently with soap and water.
4. **Apply pressure immobilization bandage:** Wrap the entire bitten limb firmly with an elastic bandage, starting at the fingers or toes and progressing toward the shoulder or groin. The bandage should be tight enough to prevent venom spread but not so tight as to cut off circulation.

5. **Immobilize the limb:** Use a splint, sling, or makeshift immobilization to keep the limb completely still.

STEP 2: Immediate Medical Care (Call Emergency Services Now)

[label=4.]

1. **Call ambulance or emergency services immediately:** Time is critical. Do not wait for symptoms to develop.
2. **Keep pressure immobilization in place:** Maintain the bandage during transport.
3. **Provide spider information:** Tell paramedics or emergency room staff that this is a Sydney funnel-web spider bite if identified.
4. **Transport urgently to hospital:** Funnel-web bites require rapid access to antivenom.
5. **Monitor for symptoms:** Watch for signs of systemic envenomation (muscle twitching, diaphoresis, respiratory difficulty).

STEP 3: Hospital-Based Treatment

[label=4.]

1. **Antivenom administration:** Sydney funnel-web antivenom should be administered as soon as possible. A single vial is typically the initial dose; additional vials may be given based on symptom severity.
2. **Symptomatic and supportive care:** Pain management with opioid analgesics, treatment of muscle symptoms with benzodiazepines if needed, and management of autonomic dysfunction.
3. **Respiratory support:** Mechanical ventilation if respiratory failure occurs.
4. **Intensive monitoring:** Continuous cardiac and neurological monitoring.
5. **Intensive care management:** Treatment of secondary complications, including autonomic storm and potential multi-organ dysfunction.

Prognosis: With available antivenom and intensive supportive care, survival is expected. Deaths are now rare in Australia due to widespread antivenom availability and public awareness.

7 Summary Comparison Table

Organism	LD50 (mg/kg)	Onset	Mechanism	Antivenom
Cone Snail	0.001–0.003	Hours	Neurotoxin	None
Box Jellyfish	0.04	Minutes	Multi-system	Yes
Brazilian Wandering Spider	0.134	Minutes	Neurotoxin	Yes (regional)
Inland Taipan	Highest (snake)	Minutes–hours	Multi-system	Yes
Sydney Funnel-Web	Very high	Minutes	Neurotoxin	Yes

Table 1: Comparison of the five deadliest animal venoms: lethal dose, time to symptom onset, primary mechanism of action, and antivenom availability.

8 General Principles for Venom Envenomation Management

Regardless of the specific venom, certain universal principles apply to emergency management of envenomation:

8.1 Pressure Immobilization (Most Envenomations)

The pressure immobilization technique, originally developed for Australian snake bite management, is effective for most terrestrial and marine animal envenomations:

1. Wrap the bitten/stung limb with an elastic bandage starting at the distal end.
2. Progress the wrapping proximally toward the torso, covering the entire limb.
3. The bandage should be firm (similar to an elastic sports wrap) but not so tight as to cut off blood circulation.
4. Immobilize the limb with a sling or splint.
5. Keep the patient still and calm.
6. Transport to the nearest hospital.

8.2 Seek Medical Care Rapidly

Most envenomations are time-sensitive medical emergencies. Do not delay transport to obtain additional information. Call emergency services immediately if systemic symptoms develop.

8.3 Avoid Harmful Interventions

The following interventions are NOT effective and may cause harm:

- Cutting the bite site
- Attempting to suck out venom

- Applying ice packs (may cause tissue damage)
- Applying tourniquets above the bite (may cause tissue damage)
- Using electrical shock
- Applying heat (except for box jellyfish, where hot water is therapeutic)

8.4 Antivenom Administration

Antivenom should be administered only by medical personnel following appropriate protocols. Self-administration is not recommended. Antivenom carries risks of anaphylaxis and serum sickness but provides life-saving benefits in appropriate cases.

9 Conclusion

The five deadliest animal venoms reviewed in this guide represent nature's most potent biological weapons. Each operates through distinct molecular mechanisms targeting the nervous system, cardiovascular system, or both. However, modern medical care—particularly pressure immobilization, rapid transport, and availability of antivenom—has dramatically reduced mortality from envenomation.

For outdoor enthusiasts working or traveling in areas where these animals are found, the best approach is prevention: awareness of habitat, appropriate protective equipment, and knowledge of safe handling practices. Should envenomation occur, understanding the emergency procedures outlined in this guide can save lives.

10 References

References

- [1] Atlas of Emergency Medicine. (2021). Cone Snail Envenomation. *AccessEmergency Medicine*, McGraw Hill Medical.
- [2] Chu, L., Yates, J., Jordan, M., Kulczycka-Marzec, B. (2016). Cone Snail Toxicity. *StatPearls*, NCBI Bookshelf. <https://www.ncbi.nlm.nih.gov/books/NBK470586/>
- [3] Divers Alert Network. Cone Snails. Health and Medical Resources. <https://dan.org/health-medicine/health-resources/diseases-conditions/cone-snails/>
- [4] Norton, R., Pallaghy, P. (2006). Toxins from cone snails: properties, applications and biotechnological production. *Toxins*, 2(8), 2650–2680. PMC2755758.
- [5] HowStuffWorks. Do jellyfish have the deadliest venom in the world? <https://animals.howstuffworks.com/marine-life/jellyfish-venom.htm>
- [6] Discover Wildlife. World's most venomous animals: 10 deadly creatures. <https://www.discoverwildlife.com/animal-facts/most-venomous-animals>

- [7] Museums Victoria. What is the most venomous animal in the world?
<https://museumsvictoria.com.au/article/what-is-the-most-venomous-animal-in-the-world/>
- [8] Planet Deadly. The Most Venomous Animals in the World.
<https://www.planetdeadly.com/animals/venomous-animals-world>
- [9] Newsweek. Most Painful and Deadly Toxins Revealed by Venom Experts.
<https://www.newsweek.com/painful-deadly-toxins-revealed-venom-experts-1643439>
- [10] The Environmental Literacy Council. What is the most lethal venom on earth?
<https://enviroliteracy.org/animals/what-is-the-most-lethal-venom-on-earth/>

A Emergency Response Flowcharts

A.1 Universal Venom Envenomation Response

FLOWCHART 1: Initial Assessment and Response

1. **ENVENOMATION OCCURS** → *Start emergency protocol*
2. **Move to safety** away from the animal
3. **Wash wound** with soap and clean water
4. **Apply pressure immobilization bandage** (firmly wrap limb from distal to proximal)
5. **Immobilize limb** with sling or splint
6. **Assess for systemic symptoms:**
 - If YES (muscle paralysis, breathing difficulty, chest pain, arrhythmias): Call ambulance immediately
 - If NO: Transport to hospital cautiously, monitoring for symptoms
7. **Hospital-based treatment** with antivenom (if available) and supportive care

A.2 Organism-Specific Response Summary

Organism	Key Immediate Action	Critical Transport
Cone Snail	Pressure immobilization	STAT (hours count)
Box Jellyfish	Vinegar rinse + hot water	STAT (minutes count)
Wandering Spider	Pressure immobilization	STAT (severe cases)
Inland Taipan	Pressure immobilization	STAT (antivenom essential)
Funnel-Web	Pressure immobilization	STAT (antivenom critical)

Table 2: Summary of key immediate responses and transport urgency by organism.