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Graphical Abstract: This study integrates district-level crop production data (237,932
records, 33 states, 1997–2015) with soil fertility measurements (100 samples, 16 parameters)
to develop machine learning models for agricultural optimization in India. Random Forest
models achieved R2 = 0.71 for crop yield prediction and 100% accuracy for soil fertility classi-
fication. Key findings reveal that temporal factors (Crop_Year) drive 48.5% of yield variance,
Tamil Nadu achieves 3.8× higher yields than Madhya Pradesh, and phosphorus levels are 80%
higher in fertile soils. Results support evidence-based regional agricultural policies and precision
farming initiatives.

Abstract
Background: India’s agricultural sector faces critical challenges in optimizing crop yields
across diverse agro-ecological zones. Data-driven approaches leveraging machine learning
can provide actionable insights for agricultural planning and policy formulation.
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Methods: We analyzed 237,932 district-level crop production records spanning 33 states
(1997–2015) alongside 100 soil fertility samples with 16 soil health parameters. Random
Forest models were developed for crop yield prediction (Regressor) and soil fertility classi-
fication (Classifier). One-way ANOVA was employed to test hypotheses regarding seasonal
and regional yield variations.
Results: The crop yield prediction model achieved R2 = 0.71 (test set) with RMSE =
14.46 tonnes/ha. Feature importance analysis revealed Crop_Year as the dominant predictor
(48.5%), followed by State_Name (33.8%) and Crop type (15.0%). The soil fertility classifier
achieved 100% accuracy on the test set (n=20), though this result should be interpreted
with caution given the small sample size. ANOVA confirmed highly significant seasonal
(F = 1264.82, p < 0.0001) and regional (F = 112.28, p < 0.0001) yield variations. Key
findings include: (1) Tamil Nadu achieves 3.8× higher mean yield than Madhya Pradesh;
(2) phosphorus levels are 80.4% higher in fertile versus non-fertile soils; (3) soil texture (clay,
sand) accounts for 41.2% of fertility classification importance.
Conclusions: Temporal technological progress is the dominant driver of yield improvements,
while substantial regional disparities indicate opportunities for targeted interventions. The
models developed provide tools for agricultural decision support, though validation on larger
independent datasets is recommended before operational deployment.
Keywords: Machine Learning, Random Forest, Crop Yield Prediction, Soil Fertility, Indian
Agriculture, ANOVA, Agricultural Planning

Page 2 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Indian Agriculture ML Analysis K-Dense Web

Contents
1 Introduction 4

1.1 Background and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Machine Learning in Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Methodology 5
2.1 Data Acquisition and Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Crop Production Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Soil Fertility Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Data Preprocessing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Crop Production Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Soil Fertility Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Crop Yield Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Soil Fertility Classification Model . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Statistical Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Software Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Results 7
3.1 Exploratory Data Analysis Findings . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Top Crops and Production Patterns . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Regional Production and Yield Disparities . . . . . . . . . . . . . . . . . . 8
3.1.3 Yield Distribution Characteristics . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Soil Nutrient Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.5 Soil Fertility Class Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Crop Yield Prediction Model Performance . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Soil Fertility Classification Model Performance . . . . . . . . . . . . . . . . . . . 12
3.4 Statistical Hypothesis Testing Results . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Seasonal Yield Variation (One-Way ANOVA) . . . . . . . . . . . . . . . . 14
3.4.2 Regional Yield Variation (One-Way ANOVA) . . . . . . . . . . . . . . . . 15

4 Scientific Caveats and Methodological Considerations 15
4.1 Soil Fertility Model: Interpretation of Perfect Accuracy . . . . . . . . . . . . . . 15
4.2 ANOVA: Variance Heterogeneity Considerations . . . . . . . . . . . . . . . . . . 15
4.3 Crop Yield Model: Overfitting Indicators . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Data Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Discussion 16
5.1 Temporal Technological Progress as Primary Yield Driver . . . . . . . . . . . . . 16
5.2 Geographic Disparities and Regional Policy Needs . . . . . . . . . . . . . . . . . 16
5.3 Soil Texture as Primary Fertility Determinant . . . . . . . . . . . . . . . . . . . . 17
5.4 Phosphorus as Critical Limiting Nutrient . . . . . . . . . . . . . . . . . . . . . . 17

6 Recommendations 17
6.1 Short-Term Actions (0–2 Years) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Medium-Term Initiatives (2–5 Years) . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Long-Term Strategies (5–10 Years) . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Conclusion 18

Page 3 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Indian Agriculture ML Analysis K-Dense Web

1 Introduction

1.1 Background and Context

India’s agricultural sector is the backbone of its economy, employing over 42% of the workforce
and contributing approximately 18% to the national GDP [1]. The country’s diverse agro-
ecological zones—spanning tropical, subtropical, arid, and temperate climates—present both
opportunities and challenges for agricultural optimization [2]. With a cultivated area exceeding
140 million hectares and over 100 major crops, understanding the complex interplay between soil
properties, regional characteristics, and temporal factors is essential for sustainable agricultural
development.

Soil health is a fundamental determinant of agricultural productivity, influencing nutrient
availability, water retention, and root development [3]. The Government of India’s Soil Health
Card Scheme, launched in 2015, aims to provide farmers with crop-specific fertilizer recom-
mendations based on soil nutrient status [4]. However, the translation of soil health data into
actionable agricultural decisions remains challenging due to the complex, non-linear relationships
between soil parameters and crop yields.

1.2 Machine Learning in Agriculture

Recent advances in machine learning have revolutionized agricultural informatics, enabling the
development of predictive models that capture complex relationships within heterogeneous agri-
cultural datasets [5]. Random Forest algorithms, in particular, have emerged as highly effective
tools for crop yield prediction due to their ability to handle mixed data types, capture non-linear
relationships, and provide interpretable feature importance rankings [6, 7].

Studies applying machine learning to Indian agriculture have reported promising results.
Nigam et al. [8] achieved 91.34% prediction accuracy using Random Forest on government
agricultural datasets, while Gupta et al. [7] reported R2 values exceeding 0.98 in multi-model
evaluations across 30 Indian states. These findings suggest substantial potential for data-driven
agricultural optimization in the Indian context.

1.3 Research Objectives

This study aims to:

1. Develop and evaluate machine learning models for crop yield prediction using district-level
production data across Indian states.

2. Build a soil fertility classification system based on soil health parameters and identify key
fertility determinants.

3. Quantify regional and seasonal variations in crop yields using statistical hypothesis testing.

4. Generate actionable insights for agricultural policy and precision farming initiatives.

1.4 Scientific Contributions

This research contributes to the field by: (1) integrating large-scale crop production data with
soil fertility measurements; (2) providing transparent feature importance analysis to guide agri-
cultural interventions; (3) identifying scientific caveats in model interpretation; and (4) offering
evidence-based recommendations for regional agricultural planning in India.
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2 Methodology

2.1 Data Acquisition and Sources

2.1.1 Crop Production Dataset

The primary crop production dataset was obtained from a publicly available GitHub repository
[9] containing district-level agricultural statistics for India. The raw dataset comprised 246,091
records with the following variables:

• Geographic identifiers: State_Name (33 states/union territories), District_Name (646
districts)

• Temporal identifier: Crop_Year (1997–2015, 19 years)

• Agricultural variables: Season (6 categories), Crop (105 unique crops), Area (hectares),
Production (tonnes)

2.1.2 Soil Fertility Dataset

Soil fertility data were sourced from a separate repository [10] containing 100 soil samples with
16 physicochemical parameters:

• Primary macronutrients: Nitrogen (N), Phosphorus (P), Potassium (K) in kg/ha

• Secondary parameters: pH, Electrical Conductivity (EC), Organic Carbon (OC), Or-
ganic Matter (OM)

• Micronutrients: Zinc (Zn), Iron (Fe), Copper (Cu), Manganese (Mn)

• Physical properties: Sand, Silt, Clay percentages

• Other: CaCO3, Cation Exchange Capacity (CEC)

• Target variable: Fertility classification (Fertile/Non-Fertile)

2.2 Data Preprocessing Pipeline

2.2.1 Crop Production Data Cleaning

The preprocessing pipeline involved:

1. Missing value removal: 3,730 rows with missing Area or Production values were dropped
(1.5% of data).

2. Text standardization: Season and Crop columns were normalized (whitespace removal,
title case conversion).

3. Yield calculation: A derived variable, Yield (tonnes/hectare), was computed as:

Yield = Production (tonnes)
Area (hectares) (1)

4. Anomaly filtering: Statistical outlier detection (IQR method) identified 906 rows with
extreme yields (>2494.37 tonnes/ha), which were removed. An additional 3,523 rows with
zero or negative production values were excluded.

5. Final dataset: 237,932 records (96.7% data retention).
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2.2.2 Soil Fertility Data Cleaning

Soil data preprocessing included:

1. Data validation: Confirmed completeness (no missing values in 100 samples).

2. Standardization: Output column normalized to title case (Fertile/Non-Fertile).

3. Feature engineering: Created Soil_Class variable and derived Texture_Class from
sand/silt/clay percentages:

• Sandy: Sand > 85% (69 samples)
• Loam: Balanced texture (31 samples)

4. Final dataset: 100 records with 19 columns (17 original + 2 derived).

2.3 Exploratory Data Analysis

EDA encompassed:

• Temporal trend analysis: Identification of top 5 crops by production; yield trajectory
visualization (1997–2015).

• Geographic pattern analysis: State-level production and yield rankings; dual-axis
visualizations.

• Statistical distribution analysis: Yield distribution histograms (linear and log scales);
skewness quantification.

• Soil correlation analysis: Pearson correlation matrix for 10 key soil nutrients.

• Soil class profiling: Comparison of NPK levels across fertility classes using boxplots and
descriptive statistics.

2.4 Machine Learning Models

2.4.1 Crop Yield Prediction Model

A Random Forest Regressor was trained with the following specifications:

Table 1: Crop Yield Prediction Model Configuration

Parameter Value
Algorithm Random Forest Regressor
Number of estimators 100 trees
Maximum depth 20 levels
Minimum samples split 2 (default)
Random state 42
Features State_Name, Season, Crop, Crop_Year
Target variable Yield (tonnes/ha)
Train/Test split 80/20 (stratified by state)
Training samples 190,345
Test samples 47,587

Categorical variables (State_Name, Season, Crop) were encoded using Label Encoding. Per-
formance was evaluated using R2 (coefficient of determination) and RMSE (Root Mean Squared
Error).
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2.4.2 Soil Fertility Classification Model

A Random Forest Classifier was configured as follows:

Table 2: Soil Fertility Classification Model Configuration

Parameter Value
Algorithm Random Forest Classifier
Number of estimators 100 trees
Maximum depth 15 levels
Random state 42
Features 16 soil properties (pH, EC, OC, OM, N, P, K, Zn, Fe, Cu, Mn, Sand, Silt, Clay, CaCO3, CEC)
Target variable Soil_Class (binary: Fertile/Non-Fertile)
Train/Test split 80/20
Training samples 80
Test samples 20

Performance metrics included accuracy, precision, recall, F1-score, and confusion matrix
analysis.

2.5 Statistical Hypothesis Testing

One-way Analysis of Variance (ANOVA) was employed to test for significant differences in crop
yields across groups:

• Null hypothesis (H0): Group means are equal.

• Alternative hypothesis (H1): At least one group mean differs.

• Significance level: α = 0.05

Two analyses were conducted:

1. Seasonal analysis: Comparing yields across 6 seasons (Kharif, Rabi, Summer, Autumn,
Winter, Whole Year).

2. Regional analysis: Comparing yields across top 5 producing states (Uttar Pradesh,
Tamil Nadu, Assam, Karnataka, Madhya Pradesh).

2.6 Software Environment

All analyses were performed using Python 3.12.10 with the following libraries: pandas 2.2.3 (data
manipulation), NumPy 2.2.1 (numerical operations), scikit-learn 1.6.1 [11] (machine learning),
SciPy 1.15.0 [12] (statistical tests), and Matplotlib 3.10.0 (visualization). Random seeds were
set consistently (seed = 42) to ensure reproducibility.

3 Results

3.1 Exploratory Data Analysis Findings

3.1.1 Top Crops and Production Patterns

Analysis of the crop production dataset identified the top 5 crops by total production volume
(1997–2015):
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Table 3: Top 5 Crops by Total Production (1997–2015)

Crop Total Production (tonnes) Share (%)
Sugarcane 5,530,028,526 48.6
Rice 1,605,470,383 14.1
Wheat 1,332,825,657 11.7
Potato 424,826,344 3.7
Cotton (Lint) 297,000,016 2.6

Figure 1 illustrates the temporal evolution of yields for these top crops from 1997 to 2015,
revealing substantial productivity gains over the study period.

Figure 1: Temporal yield trends for top 5 crops (1997–2015). The figure demonstrates consistent
productivity improvements across major crops, with sugarcane and cotton showing the most
pronounced gains.

3.1.2 Regional Production and Yield Disparities

State-level analysis revealed substantial disparities between production volume and productivity
(yield per hectare):

Table 4: Top 5 States by Mean Yield

State Mean Yield (tonnes/ha)
Tamil Nadu 12.26
Kerala 8.62
Assam 8.57
Puducherry 8.31
Haryana 8.20

Figure 2 presents a dual-axis visualization comparing total production versus mean yield for
the top producing states.
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Figure 2: Comparison of total production (bars) and mean yield (line) for top 5 producing
states. Note the divergence between production volume (Uttar Pradesh leads) and productivity
(Tamil Nadu leads).

3.1.3 Yield Distribution Characteristics

The overall yield distribution exhibited significant positive skewness (skewness = 49.92), as
shown in Figure 3. The mean yield was 5.01 tonnes/ha with substantial variation across crops,
regions, and seasons.

Figure 3: Distribution of crop yields across the dataset. The highly skewed distribution reflects
the diversity of crop types, ranging from low-yield pulses to high-yield sugarcane.

3.1.4 Soil Nutrient Correlations

Correlation analysis of soil parameters revealed important relationships, as depicted in Figure 4:

• N–OC correlation: r = 0.875 (very strong positive)—organic carbon is a primary de-
terminant of nitrogen availability.

• pH–P correlation: r = −0.104 (weak negative)—minimal relationship between soil pH
and phosphorus levels.

• Fe–Cu correlation: r = 0.330 (moderate positive)—co-occurrence of iron and copper.
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Figure 4: Correlation matrix for 10 key soil parameters. The strong N–OC correlation (r = 0.875)
indicates that organic carbon management can significantly influence nitrogen availability.

3.1.5 Soil Fertility Class Profiles

Comparison of nutrient levels between fertile and non-fertile soils revealed significant differences,
particularly in phosphorus content (Table 5, Figure 5).

Table 5: Nutrient Comparison by Soil Fertility Class

Nutrient Fertile (Mean ± SD) Non-Fertile (Mean ± SD) Difference (%)
N (kg/ha) 180.00 ± 72.41 165.52 ± 44.65 +8.7
P (kg/ha) 16.98 ± 9.20 9.41 ± 5.33 +80.4
K (kg/ha) 227.18 ± 86.31 201.04 ± 86.51 +13.0
pH 8.35 ± 0.67 8.22 ± 0.32 +1.6
OC (%) 0.23 ± 0.19 0.16 ± 0.14 +43.8
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Figure 5: Distribution of primary macronutrients (N, P, K) by soil fertility class. Phosphorus
shows the largest relative difference (80.4% higher in fertile soils), suggesting it is a critical
limiting nutrient.

3.2 Crop Yield Prediction Model Performance

The Random Forest Regressor achieved the following performance metrics:

Table 6: Crop Yield Prediction Model Performance

Metric Training Set Test Set
R2 0.9179 0.7103
RMSE (tonnes/ha) 9.12 14.46

The gap between training (R2 = 0.92) and test (R2 = 0.71) performance indicates some degree
of overfitting; however, the test performance remains acceptable for practical applications.

Feature importance analysis (Figure 6) revealed a clear hierarchy:

1. Crop_Year: 48.5% importance—temporal trends dominate yield predictions.

2. State_Name: 33.8% importance—geographic factors capture regional variations.

3. Crop: 15.0% importance—crop type affects baseline yield potential.

4. Season: 2.7% importance—seasonal effects are minimal after accounting for other factors.
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Figure 6: Feature importance rankings for the crop yield prediction model. Crop_Year (48.5%)
is the dominant predictor, reflecting technological advancement and evolving agricultural prac-
tices over time.

3.3 Soil Fertility Classification Model Performance

The Random Forest Classifier achieved the following results:

Table 7: Soil Fertility Classification Performance

Metric Training Set Test Set
Accuracy 100.0% 100.0%
Precision (Fertile) 1.00 1.00
Recall (Fertile) 1.00 1.00
F1-Score (Fertile) 1.00 1.00

Important Caveat: The 100% test accuracy should be interpreted with caution due to the
small test set size (n = 20). This result likely reflects deterministic fertility labeling rules in the
original data rather than complex predictive capability (see Section 4).

The confusion matrix (Figure 7) confirms perfect classification with no misclassifications.
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Figure 7: Confusion matrix for soil fertility classification. Perfect classification (20/20 correct)
is achieved, though this result requires validation on larger, independent datasets.

Feature importance analysis (Figure 8) revealed that physical soil properties dominate:

Table 8: Top 10 Features for Soil Fertility Classification

Rank Feature Importance (%)
1 Clay 23.8
2 CEC (Cation Exchange Capacity) 14.9
3 Sand 13.1
4 CaCO3 11.8
5 Mn (Manganese) 6.6
6 P (Phosphorus) 5.4
7 Fe (Iron) 5.0
8 Silt 4.8
9 Cu (Copper) 3.2
10 EC (Electrical Conductivity) 2.3

Physical soil properties (Clay, Sand, Silt) collectively account for 41.2% of feature impor-
tance, indicating that soil texture is a stronger predictor of fertility classification than chemical
properties.
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Figure 8: Feature importance rankings for soil fertility classification. Soil texture components
(Clay, Sand, Silt) collectively account for 41.2% of importance, highlighting the role of physical
properties in fertility determination.

3.4 Statistical Hypothesis Testing Results

3.4.1 Seasonal Yield Variation (One-Way ANOVA)

Table 9: Seasonal Yield Statistics and ANOVA Results

Season Sample Size (n) Mean Yield (tonnes/ha)
Whole Year 52,479 14.29
Winter 6,050 6.12
Summer 14,804 2.81
Autumn 4,930 2.72
Kharif 93,765 2.31
Rabi 65,904 2.04
ANOVA Results: F = 1264.82, p < 0.0001
Conclusion: Reject H0—significant differences exist across seasons

“Whole Year” crops (perennial or long-duration crops) exhibit 7-fold higher mean yield (14.29
tonnes/ha) compared to Rabi season crops (2.04 tonnes/ha).
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3.4.2 Regional Yield Variation (One-Way ANOVA)

Table 10: Regional Yield Statistics and ANOVA Results (Top 5 Producing States)

State Sample Size (n) Mean Yield (tonnes/ha)
Tamil Nadu 12,325 12.26
Assam 14,361 8.57
Uttar Pradesh 33,169 5.29
Karnataka 21,068 4.43
Madhya Pradesh 21,540 3.21
ANOVA Results: F = 112.28, p = 1.10 × 10−95

Conclusion: Reject H0—significant differences exist across states

Tamil Nadu achieves 3.8-fold higher mean yield (12.26 tonnes/ha) compared to Madhya Pradesh
(3.21 tonnes/ha), indicating substantial geographic variation in agricultural productivity.

4 Scientific Caveats and Methodological Considerations

4.1 Soil Fertility Model: Interpretation of Perfect Accuracy

The Random Forest Classifier’s 100% accuracy on both training and test sets warrants careful
interpretation:

1. Small test set size: With only 20 test samples (10 Fertile, 10 Non-Fertile), perfect
accuracy may occur by chance or due to overfitting.

2. Deterministic labeling rules: The 100% accuracy likely reflects threshold-based rules
used in the original fertility labeling (e.g., “Fertile if P > X and Clay > Y”), which the
model simply learns.

3. Generalization concerns: Perfect accuracy does not guarantee performance on:

• Larger, more diverse soil samples from different regions
• Soils with intermediate fertility characteristics
• Data from different measurement instruments or protocols

Recommendation: Validate the soil fertility model on independent datasets with n > 100
test samples and geographic diversity before operational deployment.

4.2 ANOVA: Variance Heterogeneity Considerations

Standard one-way ANOVA assumes homogeneity of variance (homoscedasticity) across groups.
Given India’s diverse agricultural conditions:

• Yield variances likely differ substantially between seasons and regions

• Variance heterogeneity can inflate or deflate F-statistic values

• Exact p-value magnitudes may be affected, though conclusions at p < 0.0001 remain robust

Recommendation: Future analyses should employ Welch’s ANOVA [13], which does not
assume equal variances, and report effect size measures (eta-squared, η2) to quantify practical
significance.
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4.3 Crop Yield Model: Overfitting Indicators

The gap between training (R2 = 0.92) and test (R2 = 0.71) performance indicates overfitting.
Potential causes include:

• Large tree depth (max_depth = 20) allowing memorization of training patterns

• Label Encoding of nominal categorical variables (State_Name, Crop), which may impose
artificial ordinal relationships

Recommendation: Implement cross-validation, reduce max_depth, and consider alterna-
tive encoding strategies (target encoding, one-hot encoding) to improve generalization.

4.4 Data Limitations

• No soil-crop linkage: Crop production data lacks soil health information, preventing
direct soil-yield modeling.

• District-level aggregation: Masks within-district heterogeneity in yields and practices.

• Missing variables: No data on irrigation, fertilizer use, pest pressure, or weather condi-
tions.

• Temporal scope: Data spans 1997–2015; recent trends (2016–2025) are not captured.

5 Discussion

5.1 Temporal Technological Progress as Primary Yield Driver

The dominance of Crop_Year as the top predictor (48.5% importance) represents a key finding
with significant policy implications. This result suggests that technological improvements and
evolving agricultural practices have driven substantial yield gains over the 1997–2015 period
[2, 14].

Contributing factors likely include:

• Adoption of high-yielding varieties (HYVs) and genetically improved cultivars

• Increased and more balanced fertilizer application

• Expansion of irrigation infrastructure (canal, drip, sprinkler systems)

• Agricultural mechanization (tractors, harvesters, precision equipment)

• Improved extension services and farmer training

• Policy interventions including minimum support prices (MSPs) and subsidies

Policy implication: Continued investment in agricultural R&D and extension services is
essential to maintain innovation momentum and productivity growth [7].

5.2 Geographic Disparities and Regional Policy Needs

The 3.8-fold yield difference between Tamil Nadu (12.26 tonnes/ha) and Madhya Pradesh (3.21
tonnes/ha) reveals distinct agricultural profiles:

1. High-productivity states (Tamil Nadu, Kerala, Assam): Intensive agriculture with
superior irrigation, soil management, and extension services; focus on high-value crops.
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2. High-production states (Uttar Pradesh, Madhya Pradesh): Extensive agriculture with
large cultivable area but lower yields; greater potential for productivity improvement.

Policy implication: Differentiated strategies are needed—productivity enhancement pro-
grams for high-production/low-yield states, and area expansion or diversification support for
high-productivity states [15].

5.3 Soil Texture as Primary Fertility Determinant

The dominance of clay content (23.8%) and other texture parameters in fertility classification
aligns with soil science principles [3, 10]:

• Clay particles provide high cation exchange capacity (CEC), enabling nutrient retention

• Loamy textures (balanced sand-silt-clay) optimize water holding capacity and root pene-
tration

• Physical properties determine the soil’s capacity to retain nutrients, which in turn governs
chemical fertility

Agricultural implication: Fertility management should be texture-specific. Sandy soils
require frequent, smaller fertilizer applications due to low retention, while clay soils benefit from
organic matter amendments to improve structure [16].

5.4 Phosphorus as Critical Limiting Nutrient

The 80.4% higher phosphorus level in fertile versus non-fertile soils identifies P as a potential
limiting nutrient [17]. This finding is consistent with the known phosphorus deficiency of many
Indian soils and the role of P fixation in alkaline conditions (mean pH = 8.35 in fertile soils).

Agricultural implication: Targeted phosphatic fertilizer programs (DAP, SSP) should be
prioritized in phosphorus-deficient regions, alongside soil pH management strategies to improve
P availability [18].

6 Recommendations
Based on the findings of this study, we propose the following recommendations for agricultural
planning in India:

6.1 Short-Term Actions (0–2 Years)

1. Deploy yield prediction model: Integrate the crop yield prediction model into state
agricultural department decision support systems for resource allocation optimization.

2. Expand soil texture analysis: Mandate sand-silt-clay measurements in the Soil Health
Card program alongside chemical nutrient testing.

3. Phosphorus supplementation: Identify low-phosphorus districts using Soil Health
Card data and implement targeted phosphatic fertilizer distribution.
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6.2 Medium-Term Initiatives (2–5 Years)

1. Technology transfer programs: Document best practices from Tamil Nadu, Kerala,
and Assam; establish demonstration farms in low-yield states.

2. Irrigation infrastructure: Prioritize micro-irrigation in water-scarce regions to boost
Rabi season yields.

3. Model validation: Collect additional soil samples (n > 1000) with geographic identifiers
to validate the fertility model.

6.3 Long-Term Strategies (5–10 Years)

1. Integrated database development: Link soil health data with crop production data
at the district or village level for precision agriculture.

2. Climate-smart agriculture: Develop season-crop-region combinations optimized for
climate resilience; promote drought/flood-tolerant varieties.

3. Advanced modeling: Incorporate weather data, fertilizer application rates, and satellite
imagery; explore deep learning architectures for improved accuracy.

7 Conclusion
This comprehensive analysis of Indian soil properties and crop production patterns has yielded
several key insights for agricultural optimization:

1. Temporal technological progress (captured by Crop_Year, 48.5% importance) is the
dominant driver of yield improvements, underscoring the importance of continued invest-
ment in agricultural R&D and extension services.

2. Substantial regional yield disparities exist, with Tamil Nadu achieving 3.8× higher
yields than Madhya Pradesh, indicating opportunities for targeted interventions and knowl-
edge transfer.

3. Soil physical properties (clay, sand, CEC) are stronger predictors of fertility than
chemical nutrients, highlighting the need for texture-based soil management strategies.

4. Phosphorus availability is a critical limiting factor, with fertile soils containing 80%
more phosphorus than non-fertile soils, warranting targeted fertilization programs.

5. Seasonal variations significantly impact productivity, with “Whole Year” crops yielding
7× more than Rabi crops, suggesting opportunities for seasonal optimization.

The machine learning models developed—a crop yield prediction model (R2 = 0.71) and a soil
fertility classifier (100% accuracy, with caveats)—provide tools for agricultural decision support.
However, both models require validation on larger, independent datasets before operational
deployment.

Critical considerations: The soil fertility model’s perfect accuracy is based on a small
test set (n = 20) and likely reflects deterministic labeling rules rather than complex predictive
capability. ANOVA results, while statistically significant, should be interpreted with awareness
of potential variance heterogeneity.

Future research should focus on: (1) integrating soil and crop datasets with geographic
linkage; (2) incorporating weather, irrigation, and input use data; (3) validating models on
independent, larger-scale datasets; and (4) developing climate-resilient agricultural strategies.
The insights generated from this analysis provide a foundation for evidence-based agricultural
policy and precision farming initiatives in India.
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