
Agent Skills vs Model Context
Protocol (MCP)

A Comprehensive Technical Comparison

Two Approaches to Extending AI Agent Capabilities

Author: K-Dense Web
Email: contact@k-dense.ai
Date: January 1, 2026

Document Type: Technical Report

Generated using K-Dense Web (k-dense.ai)

mailto:contact@k-dense.ai
https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

Contents

1 Executive Summary 2
1.1 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introduction 3
2.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Purpose of This Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Technical Overview: Model Context Protocol (MCP) 4
3.1 Core Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Architectural Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Communication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 Request Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.2 Response Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.3 Notification Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Connection Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Core Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5.1 Server-Exposed Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5.2 Client-Exposed Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.6 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.7 Ecosystem and Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Technical Overview: Agent Skills 8
4.1 Core Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Skill Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.1 SKILL.md Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.2 Required Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2.3 Optional Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Progressive Disclosure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Integration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4.1 Filesystem-Based Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4.2 Tool-Based Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.5 System Prompt Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.7 Ecosystem and Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

5 Comparative Analysis 11
5.1 Architectural Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1.1 Fundamental Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.2 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Data Flow Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.1 Agent Skills Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.2 MCP Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 Security Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Developer Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.4.1 Creating New Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4.2 Integration Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.5 Ecosystem and Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5.1 Agent Skills Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5.2 MCP Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.6 Performance Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Use Case Scenarios 16
6.1 When to Choose Agent Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 When to Choose MCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Conclusion and Recommendations 18
7.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 Recommendations by Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3 Implementation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.4 Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 References 20

2 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

1 Executive Summary

As artificial intelligence agents become increasingly sophisticated, the need for standardized
methods to extend their capabilities has emerged as a critical challenge in the field. Two promi-
nent approaches have arisen to address this need: Agent Skills and the Model Context
Protocol (MCP). While both aim to enhance AI agent functionality, they represent funda-
mentally different architectural philosophies with distinct trade-offs.
Agent Skills, developed by Anthropic and released as an open standard, provides a file-based,
portable format for packaging domain expertise, workflows, and executable code into self-
contained skill directories. The approach emphasizes simplicity, portability, and human-readable
specifications through SKILL.md files with YAML frontmatter and Markdown instructions.
Model Context Protocol (MCP), also initiated by Anthropic, establishes a standardized
communication protocol based on JSON-RPC 2.0 for connecting AI applications to external
systems, tools, and data sources. MCP functions as “USB-C for AI applications”—providing a
universal interface layer between AI hosts and capability-providing servers.

1.1 Key Findings

Dimension Agent Skills MCP
Architecture File-based folders with

SKILL.md
Client-Host-Server with
JSON-RPC 2.0

Integration Low (drop files into directory) Moderate (requires SDK)
State Manage-
ment

Stateless (file reads) Stateful (connection lifecycle)

Best For Knowledge packaging, work-
flows

External system integration

Security Model Sandbox execution, allowlist-
ing

OAuth 2.1, transport security

Table 1: Summary comparison of Agent Skills and MCP

Recommendation: These technologies are complementary rather than competitive.
Organizations should consider Agent Skills for packaging domain expertise and standardized
workflows, while leveraging MCP for real-time integration with external systems, databases,
and APIs.

3 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

2 Introduction

2.1 Background and Motivation

The rapid advancement of large language models (LLMs) has catalyzed a fundamental shift
in how we conceptualize AI applications. Modern AI agents are no longer limited to text
generation—they can execute code, query databases, interact with APIs, and perform com-
plex multi-step tasks. However, extending agent capabilities has traditionally required custom
integrations, leading to fragmented ecosystems and duplicated effort across organizations.
Two open standards have emerged to address this challenge:

1. Agent Skills: A simple, open format for packaging domain expertise and workflows into
portable, version-controlled skill directories

2. Model Context Protocol (MCP): A standardized protocol for connecting AI applica-
tions to external tools, data sources, and systems

Both standards originated from Anthropic’s work on AI agents but represent distinctly different
approaches to the capability extension problem.

2.2 Purpose of This Report

This technical report provides system architects, developers, and technical decision-makers with:

• A comprehensive understanding of both Agent Skills and MCP architectures

• Detailed comparison across key technical dimensions

• Guidance on selecting the appropriate approach for specific use cases

• Best practices for implementation and integration

2.3 Scope

This analysis covers the latest publicly available specifications as of January 2026:

• Agent Skills: Open specification at agentskills.io

• MCP: Version 2025-11-25 at modelcontextprotocol.io

4 Generated using K-Dense Web (k-dense.ai)

https://agentskills.io
https://modelcontextprotocol.io
https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

3 Technical Overview: Model Context Protocol (MCP)

3.1 Core Architecture

MCP implements a three-layer architecture designed to standardize communication between AI
applications and external capability providers.

Figure 1: Model Context Protocol Architecture — Three-tier Client-Host-Server model with
JSON-RPC 2.0 communication protocol.

3.1.1 Architectural Components

MCP Host: The AI application (e.g., Claude Desktop, Claude Code, VS Code) that coordi-
nates and manages multiple MCP clients. The host:

• Instantiates separate MCP client objects for each server connection

• Aggregates tools from all connected servers into a unified registry

• Routes tool invocations to the appropriate MCP server

• Manages the overall lifecycle of MCP connections

MCP Client: A component that maintains a connection to an MCP server and obtains context
for the host. Each client handles:

• Connection establishment and lifecycle management

• Capability negotiation with its paired server

• Message serialization and deserialization

• Notification handling for dynamic capability updates

MCP Server: A program that provides context, tools, and resources to MCP clients. Servers
expose:

5 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

• Tools: Executable functions the AI can invoke

• Resources: Data sources providing contextual information

• Prompts: Reusable interaction templates

3.2 Communication Protocol

MCP is built on JSON-RPC 2.0, a lightweight remote procedure call protocol. The protocol
defines three message types:

3.2.1 Request Messages

Requests require a response from the server:

1 {
2 " jsonrpc ": "2.0",
3 "id": 1,
4 " method ": "tools/list",
5 " params ": {}
6 }

Listing 1: MCP Request Example

3.2.2 Response Messages

Responses are paired with requests:

1 {
2 " jsonrpc ": "2.0",
3 "id": 1,
4 " result ": {
5 "tools": [
6 {
7 "name": " weather_current ",
8 " description ": "Fetch current weather ",
9 " inputSchema ": {

10 "type": " object ",
11 " properties ": {
12 " location ": { "type": " string " }
13 },
14 " required ": [" location "]
15 }
16 }
17 ]
18 }
19 }

Listing 2: MCP Response Example

3.2.3 Notification Messages

Notifications are fire-and-forget (no response expected):

1 {
2 " jsonrpc ": "2.0",

6 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

3 " method ": " notifications /tools/ list_changed "
4 }

Listing 3: MCP Notification Example

3.3 Transport Layer

MCP supports multiple transport mechanisms:

Transport Use Case Benefits
stdio Local process communication Optimal performance, no network overhead
HTTP/SSE Remote servers Standard HTTP authentication support
Custom Specialized requirements Flexibility for unique deployments

Table 2: MCP Transport Options

3.4 Connection Lifecycle

MCP connections follow a defined lifecycle:

1. Initialization: Client sends initialize request with capabilities

2. Capability Negotiation: Server responds with its capabilities

3. Ready Notification: Client sends notifications/initialized

4. Operation: Normal request/response message exchange

5. Termination: Graceful connection closure

3.5 Core Primitives

3.5.1 Server-Exposed Primitives

Primitive Purpose Key Methods
Tools Executable functions tools/list, tools/call
Resources Data sources resources/list, resources/read
Prompts Interaction templates prompts/list, prompts/get

Table 3: MCP Server Primitives

3.5.2 Client-Exposed Primitives

Primitive Purpose
Sampling Request LLM completions via sampling/complete
Elicitation Request user input via elicitation/request
Logging Send debug/monitoring messages

Table 4: MCP Client Primitives

7 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

3.6 Security Model

MCP implements a multi-layered security approach:

1. Authorization: Optional OAuth 2.1 support for sensitive operations

2. Transport Security: HTTPS for remote connections

3. Access Control: Per-operation permissions

4. Input Validation: Schema-based parameter validation

5. Audit Logging: Tracking of sensitive operations

3.7 Ecosystem and Adoption

MCP has achieved broad adoption across the AI ecosystem:

• Official SDKs: Python, TypeScript/JavaScript

• Community SDKs: Rust, Go, and others

• Pre-built Servers: File system, database, API integrations

• Development Tools: MCP Inspector for debugging and testing

8 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

4 Technical Overview: Agent Skills

4.1 Core Architecture

Agent Skills implement a file-based architecture designed for portability, simplicity, and pro-
gressive context loading.

Figure 2: Agent Skills Architecture — Progressive disclosure model with four-stage loading:
Repository → Discovery → Activation → Execution.

4.2 Skill Structure

Every skill is a directory containing a SKILL.md file with YAML frontmatter and Markdown
body:

1 my -skill/
2 |-- SKILL.md # Required : Specification file
3 |-- scripts / # Optional : Executable code
4 | ‘-- analyze .py
5 |-- references / # Optional : Documentation
6 | ‘-- REFERENCE .md
7 ‘-- assets / # Optional : Templates , data
8 ‘-- template .json

Listing 4: Agent Skills Directory Structure

4.2.1 SKILL.md Format

1 ---
2 name: data - analysis
3 description: Provides data analysis capabilities including
4 statistical testing , visualization , and dataset exploration
5 license: MIT
6 compatibility: Requires pandas , matplotlib
7 ---

9 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

8

9 # Data Analysis Skill
10

11 ## Overview
12 This skill enables comprehensive data analysis workflows ...
13

14 ## Usage Instructions
15 1. Load dataset using ‘scripts / load_data .py ‘
16 2. Run statistical analysis with ‘scripts / analyze .py ‘
17 3. Generate visualizations ...

Listing 5: Example SKILL.md File

4.2.2 Required Fields

Field Requirements
name 1-64 characters, lowercase alphanumeric with hyphens
description 1-1024 characters describing functionality

Table 5: Required SKILL.md Fields

4.2.3 Optional Fields

Field Purpose
license Licensing terms or reference to bundled license
compatibility Environment requirements, system packages
metadata Key-value mapping for custom properties
allowed-tools Pre-approved tool list (experimental)

Table 6: Optional SKILL.md Fields

4.3 Progressive Disclosure Model

Agent Skills implement a three-stage loading mechanism to optimize context usage:
Stage 1: Metadata (∼100 tokens per skill)
Only name and description loaded at startup for all skills. Enables the agent to determine
relevance without loading full instructions.
Stage 2: Instructions (<5,000 tokens)
Full SKILL.md body loaded when a task matches the skill’s purpose. Provides detailed instruc-
tions, examples, and workflows.
Stage 3: Resources (On-demand)
Scripts, references, and assets loaded only when specifically needed during execution.

4.4 Integration Methods

4.4.1 Filesystem-Based Agents

For agents with computer environment access (bash/unix):

10 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

1 # Agent reads skill directly
2 cat /path/to/ skills /my -skill/SKILL.md

Listing 6: Filesystem-based Skill Loading

This represents the most capable integration option, as agents can directly read and execute
skill contents.

4.4.2 Tool-Based Agents

For agents without filesystem access, implement tools that:

1. List available skills

2. Load skill metadata

3. Activate skill instructions

4. Execute bundled scripts

4.5 System Prompt Integration

Skills are surfaced to agents via XML in system prompts:

1 <available_skills >
2 <skill >
3 <name >data - analysis </name >
4 <description >Statistical testing and visualization </ description >
5 <location >/path/to/ skills /data - analysis /SKILL.md</ location >
6 </skill >
7 </ available_skills >

Listing 7: System Prompt Skill Integration

Each skill adds approximately 50-100 tokens to the context.

4.6 Security Considerations

• Sandboxing: Execute scripts in isolated environments

• Allowlisting: Run scripts only from trusted skill sources

• User Confirmation: Request approval before dangerous operations

• Audit Logging: Record all script executions

4.7 Ecosystem and Adoption

Agent Skills is supported by major platforms including Claude Code, Claude Desktop, VS Code,
OpenCode, Cursor, Amp, Letta, Goose, GitHub, and OpenAI Codex.

11 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

5 Comparative Analysis

5.1 Architectural Comparison

Figure 3: Side-by-side comparison of Agent Skills and MCP across key architectural dimensions.

5.1.1 Fundamental Philosophy

Aspect Agent Skills MCP
Paradigm File-based packaging Protocol-based communication
Metaphor “Plug-and-play skill folders” “USB-C for AI applications”
State Stateless (each read independent) Stateful (connection lifecycle)
Complexity Minimal Moderate

Table 7: Fundamental Philosophical Differences

5.1.2 Communication Model

Agent Skills: Direct file system access

• Agent reads SKILL.md and associated files

• No runtime protocol overhead

• Works offline

• Simple debugging (inspect files directly)

MCP: JSON-RPC 2.0 protocol

• Bidirectional message exchange

• Capability negotiation at connection time

12 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

• Real-time notifications for dynamic updates

• Structured request/response patterns

5.2 Data Flow Comparison

Figure 4: Data flow comparison between Agent Skills (file-based) and MCP (protocol-based)
approaches.

5.2.1 Agent Skills Data Flow

1. User Request

2. AI Agent

3. Skill Discovery (scan directories)

4. Match Task to Skill

5. Load SKILL.md Instructions

6. Execute Scripts (if needed)

7. Return Results to User

Characteristics: Synchronous file-based operations, no connection management, lazy loading
of resources, simple error handling.

5.2.2 MCP Data Flow

1. User Request

2. AI Host Application

3. MCP Client Selection

13 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

4. Transport Layer (JSON-RPC 2.0)

5. MCP Server Processing

6. Tool Execution

7. Response via Transport

8. Result to Host → User

Characteristics: Asynchronous message-based operations, connection lifecycle management,
capability negotiation, structured error handling.

5.3 Security Comparison

Security As-
pect

Agent Skills MCP

Authentication Trust-based (allowlisted
skills)

OAuth 2.1, API keys, bearer
tokens

Authorization Per-skill allowlisting Per-operation access control
Transport Local file system HTTPS, TLS for remote
Isolation Sandbox execution Server-side isolation
Audit Execution logging Full message logging

Table 8: Security Model Comparison

5.4 Developer Experience

5.4.1 Creating New Capabilities

Agent Skills (Time to first capability: ∼5 minutes):

1 mkdir my -skill
2 cat > my -skill/SKILL.md << ’EOF ’
3 ---
4 name: my -skill
5 description : Does something useful
6 ---
7 # My Skill
8 Instructions here ...
9 EOF

MCP (Time to first capability: ∼15-30 minutes):

1 from mcp import MCPServer
2

3 server = MCPServer ("my - server ")
4

5 @server .tool ()
6 def my_tool (param: str) -> str:
7 """Does something useful """
8 return f" Result : {param}"
9

10 server .run ()

14 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

5.4.2 Integration Effort

Task Agent Skills MCP
Setup Drop folder into skills directory Configure client, install SDK
Dependencies None (file-based) SDK, transport configuration
Testing Read files, check syntax MCP Inspector, integration tests
Debugging Inspect files directly Trace JSON-RPC messages
Deployment Copy folders Deploy server, configure connections

Table 9: Integration Effort Comparison

5.5 Ecosystem and Interoperability

5.5.1 Agent Skills Ecosystem

Strengths:

• Extremely portable (just files)

• Human-readable and auditable

• Version control friendly

• Cross-platform compatibility

• Low barrier to entry

Limitations:

• Limited to file-system operations

• No real-time external system access

• Execution depends on agent capabilities

• Newer ecosystem, fewer pre-built skills

5.5.2 MCP Ecosystem

Strengths:

• Mature protocol specification

• Official SDKs in multiple languages

• Large collection of pre-built servers

• Real-time integration capabilities

• Strong tooling (Inspector, debugging)

Limitations:

• Higher implementation complexity

15 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

• Requires server deployment

• Connection management overhead

• More infrastructure requirements

5.6 Performance Considerations

Metric Agent Skills MCP
Startup Time Minimal (read metadata) Connection handshake required
Operation Latency File I/O only Network + processing
Memory Overhead Low (load on demand) Connection state management
Scalability Linear with skill count Depends on server capacity

Table 10: Performance Comparison

16 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

6 Use Case Scenarios

6.1 When to Choose Agent Skills

Ideal for:

1. Domain Expertise Packaging

• Legal document workflows
• Medical diagnosis procedures
• Financial analysis frameworks

2. Standardized Workflows

• Code review checklists
• Documentation generation
• Testing procedures

3. Portable Knowledge

• Cross-organization skill sharing
• Training and onboarding materials
• Best practices codification

4. Offline Scenarios

• Air-gapped environments
• Limited connectivity situations
• Local-only deployments

6.2 When to Choose MCP

Ideal for:

1. External System Integration

• Database queries
• API interactions
• File system operations

2. Real-Time Data Access

• Calendar integration
• Live monitoring dashboards
• Dynamic content retrieval

3. Enterprise Workflows

• Multi-system orchestration
• Authenticated service access
• Audit-compliant operations

17 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

4. Dynamic Capabilities

• Tools that change at runtime
• Context-dependent functionality
• Real-time capability negotiation

6.3 Hybrid Approach

Many sophisticated deployments benefit from using both technologies:

• Use Agent Skills for: What the agent should know and how it should approach problems

• Use MCP for: What external systems the agent can interact with

18 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

7 Conclusion and Recommendations

7.1 Summary of Findings

Agent Skills and MCP represent two fundamentally different but complementary approaches to
extending AI agent capabilities:
Agent Skills excels at:

• Packaging domain expertise in portable, human-readable formats

• Defining standardized workflows and procedures

• Low-friction integration with minimal setup

• Cross-platform, offline-capable deployments

MCP excels at:

• Real-time integration with external systems

• Secure, authenticated access to sensitive resources

• Dynamic capability negotiation

• Enterprise-grade workflows with audit requirements

7.2 Recommendations by Use Case

Scenario Recommendation
Packaging institutional knowledge Agent Skills
Integrating with databases/APIs MCP
Cross-organization sharing Agent Skills
Real-time data access MCP
Workflow standardization Agent Skills
Multi-system orchestration MCP
Offline/air-gapped environments Agent Skills
Authenticated enterprise access MCP

Table 11: Technology Selection by Use Case

7.3 Implementation Strategy

For organizations building AI agent infrastructure, we recommend:

1. Start with Agent Skills for capturing domain expertise and workflows

• Low barrier to entry
• Immediately portable across tools
• Easy to version control and audit

2. Add MCP for external system integration needs

19 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

• When real-time data access is required
• When authentication/authorization is critical
• When dynamic capabilities are needed

3. Use both in concert for comprehensive agent platforms

• Skills define how the agent approaches tasks
• MCP provides what external systems the agent can access

7.4 Future Outlook

Both standards continue to evolve rapidly:

• Agent Skills is expanding its ecosystem with more tooling and pre-built skills

• MCP is adding new primitives and improving the developer experience

As AI agents become more prevalent, standardization through approaches like these will be
essential for building maintainable, secure, and interoperable AI systems.

20 Generated using K-Dense Web (k-dense.ai)

https://k-dense.ai


Agent Skills vs MCP: Technical Comparison K-Dense Web

8 References

1. Agent Skills. (2026). Agent Skills Specification. Retrieved from https://agentskills.
io/specification

2. Agent Skills. (2026). What Are Agent Skills? Retrieved from https://agentskills.
io/what-are-skills

3. Agent Skills. (2026). Integrating Agent Skills. Retrieved from https://agentskills.
io/integrate-skills

4. Model Context Protocol. (2025). Introduction to MCP. Retrieved from https://modelcontextprotocol.
io/docs/getting-started/intro

5. Model Context Protocol. (2025). MCP Architecture. Retrieved from https://modelcontextprotocol.
io/docs/learn/architecture

6. Model Context Protocol. (2025). Protocol Specification v2025-11-25. Retrieved from
https://modelcontextprotocol.io/specification/2025-11-25

7. JSON-RPC Working Group. (2013). JSON-RPC 2.0 Specification. Retrieved from
https://www.jsonrpc.org/specification

Generated using K-Dense Web (k-dense.ai)

21 Generated using K-Dense Web (k-dense.ai)

https://agentskills.io/specification
https://agentskills.io/specification
https://agentskills.io/what-are-skills
https://agentskills.io/what-are-skills
https://agentskills.io/integrate-skills
https://agentskills.io/integrate-skills
https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/learn/architecture
https://modelcontextprotocol.io/docs/learn/architecture
https://modelcontextprotocol.io/specification/2025-11-25
https://www.jsonrpc.org/specification
https://k-dense.ai
https://k-dense.ai

	Executive Summary
	Key Findings

	Introduction
	Background and Motivation
	Purpose of This Report
	Scope

	Technical Overview: Model Context Protocol (MCP)
	Core Architecture
	Architectural Components

	Communication Protocol
	Request Messages
	Response Messages
	Notification Messages

	Transport Layer
	Connection Lifecycle
	Core Primitives
	Server-Exposed Primitives
	Client-Exposed Primitives

	Security Model
	Ecosystem and Adoption

	Technical Overview: Agent Skills
	Core Architecture
	Skill Structure
	SKILL.md Format
	Required Fields
	Optional Fields

	Progressive Disclosure Model
	Integration Methods
	Filesystem-Based Agents
	Tool-Based Agents

	System Prompt Integration
	Security Considerations
	Ecosystem and Adoption

	Comparative Analysis
	Architectural Comparison
	Fundamental Philosophy
	Communication Model

	Data Flow Comparison
	Agent Skills Data Flow
	MCP Data Flow

	Security Comparison
	Developer Experience
	Creating New Capabilities
	Integration Effort

	Ecosystem and Interoperability
	Agent Skills Ecosystem
	MCP Ecosystem

	Performance Considerations

	Use Case Scenarios
	When to Choose Agent Skills
	When to Choose MCP
	Hybrid Approach

	Conclusion and Recommendations
	Summary of Findings
	Recommendations by Use Case
	Implementation Strategy
	Future Outlook

	References

